Abstract

A hybrid CATV/16-QAM OFDM in-building network over a combination of single-mode fiber (SMF) and graded-index plastic optical fiber (GI-POF) transport is proposed and experimentally demonstrated with good qualities of service. In this system, a 1556 nm optical signal is directly transmitted along with two fiber spans (20-km SMF + 25-m GI-POF). Without using any wavelength conversion or bridge circuit between SMF and POF connection, error free transmissions with sufficient low bit error rate (BER) values are achieved for 2.5Gbps/2.5GHz and 5Gbps/2.5GHz OFDM signals; as well as good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) are obtained for CATV one. This proposed network reveals an outstanding one with economy and convenience to be installed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Grassi, J. Mora, B. Ortega, and J. Capmany, “Radio over fiber transceiver employing phase modulation of an optical broadband source,” Opt. Express 18(21), 21750–21756 (2010).
    [CrossRef] [PubMed]
  2. C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
    [CrossRef] [PubMed]
  3. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  4. H.-H. Lu, C.-H. Chang, P.-C. Peng, H.-S. Su, and H.-W. Hu, “A radio-over-GI-POF transport system,” J. Lightwave Technol. 28(13), 1917–1921 (2010).
    [CrossRef]
  5. H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” in Conference on Optical Fiber Communications (OFC) (2009), paper PDPD8.
  6. J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” in European Conference on Optical Communications (ECOC) (2008), Vol. 5–237, p. 6.16.
  7. M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
    [CrossRef]
  8. C.-H. Chang, H.-S. Su, H.-H. Lu, P.-C. Peng, and H.-W. Hu, “Integrating fiber to the home and POF in-door routing CATV transport system,” J. Lightwave Technol. 28(12), 1864–1869 (2010).
    [CrossRef]
  9. W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. Yu, J. Wang, C. Yu, Z. Dong, J. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60GHz wireless access,” in Conference on Optical Fiber Communications (OFC) (2010), paper OTuF3.
  10. B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad convergence of 32QAM-OFDM ROF and WDM-OFDM-PON system using an integrated modulator for bidirectional access networks,” in Conference on Optical Fiber Communications (OFC) (2010), paper JThA26.
  11. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
    [CrossRef] [PubMed]
  12. H. J. R. Dutton, Understanding Optical Communications (Prentice Hall PTR, 1998), pp. 61–62.
  13. A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” in European Conference on Optical Communications (ECOC) (2004), paper Th1.
  14. H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
    [CrossRef]
  15. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Inc., 2009), pp. 483.

2011 (1)

2010 (3)

2009 (1)

2008 (1)

2007 (1)

2004 (1)

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

Asai, M.

Capmany, J.

Chang, C. H.

Chang, C.-H.

Chen, C. Y.

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

Chen, K. J.

Chi, S.

Chow, C. W.

Giddings, R. P.

Grassi, F.

Hirose, R.

Hong, Y.

Hu, H.-W.

Hugues-Salas, E.

Jin, X. Q.

Koike, Y.

Kondo, A.

Lu, H. H.

C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
[CrossRef] [PubMed]

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

Lu, H.-H.

Mora, J.

Ortega, B.

Pan, C. L.

Peng, H. C.

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

Peng, P.-C.

Shih, C. L.

Shih, F. Y.

Shu, C.

Su, H. S.

Su, H.-S.

Tang, J. M.

Tsai, W. S.

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

Wang, C. H.

Wei, J. L.

Yeh, C. H.

Zheng, X.

IEEE Photon. Technol. Lett. (1)

H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett. 16(11), 2565–2567 (2004).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Other (7)

H. J. R. Dutton, Understanding Optical Communications (Prentice Hall PTR, 1998), pp. 61–62.

A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” in European Conference on Optical Communications (ECOC) (2004), paper Th1.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Inc., 2009), pp. 483.

H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” in Conference on Optical Fiber Communications (OFC) (2009), paper PDPD8.

J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” in European Conference on Optical Communications (ECOC) (2008), Vol. 5–237, p. 6.16.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. Yu, J. Wang, C. Yu, Z. Dong, J. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60GHz wireless access,” in Conference on Optical Fiber Communications (OFC) (2010), paper OTuF3.

B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad convergence of 32QAM-OFDM ROF and WDM-OFDM-PON system using an integrated modulator for bidirectional access networks,” in Conference on Optical Fiber Communications (OFC) (2010), paper JThA26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental configuration of our proposed hybrid CATV/16-QAM OFDM in-building networks over a combination of 20-km SMF and 25-m GI-POF links.

Fig. 2
Fig. 2

Electrical spectra of the combined CATV and 2.5Gbps/2.5GHz 16-QAM OFDM signals for (a) BTB case, (b) over a combination of 20-km SMF and 25-m GI-POF transmission case.

Fig. 3
Fig. 3

Electrical spectra of the combined CATV and 5Gbps/2.5GHz 16-QAM OFDM signals for (a) BTB case, (b) over a combination of 20-km SMF and 25-m GI-POF transmission case.

Fig. 4
Fig. 4

Schematic spectrum diagram of (a) the 2.5Gbps/2.5GHz OOK signal and the CATV signal, and (b) the 2.5Gbps/3.05GHz OOK signal and the CATV signal.

Fig. 5
Fig. 5

The measured BER curves and constellation maps for (a) 2.5Gbps/2.5GHz OFDM signal and 2.5Gbps/3.05GHz OOK signal, (b) 5Gbps/2.5GHz OFDM signal and 5Gbps/5.55GHz OOK signal.

Fig. 6
Fig. 6

The measured CNR, CSO and CTB values for transmitting signals of CATV and 2.5Gbps/2.5GHz 16-QAM OFDM ones as well as CATV and 2.5Gbps/3.05GHz OOK ones: (a) measured at point A of Fig. 1, (b) measured at point B of Fig. 1.

Fig. 7
Fig. 7

The measured CNR, CSO and CTB values for transmitting signals of CATV and 5Gbps/2.5GHz 16-QAM OFDM ones as well as CATV and 5Gbps/5.55GHz OOK ones: (a) measured at point A of Fig. 1, (b) measured at point B of Fig. 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D i s p e r s i o n t i m e = N A 2 × L 2 n c

Metrics