Abstract

We demonstrate a high-finesse femtosecond enhancement cavity with an on-axis obstacle. By inserting a wire with a width of 5% of the fundamental mode diameter, the finesse of F = 3400 is only slightly reduced to F = 3000. The low loss is due to the degeneracy of transverse modes, which allows for exciting a circulating field distribution avoiding the obstacle. We call this condition quasi-imaging. The concept could be used for output coupling of intracavity-generated higher-order harmonics through an on-axis opening in one of the cavity mirrors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
    [CrossRef] [PubMed]
  2. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
    [CrossRef] [PubMed]
  3. I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
    [CrossRef]
  4. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
    [CrossRef] [PubMed]
  5. Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
    [CrossRef] [PubMed]
  6. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008).
    [CrossRef] [PubMed]
  7. Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011).
    [CrossRef] [PubMed]
  8. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006).
    [CrossRef] [PubMed]
  9. W. P. Putnam, G. Abram, E. L. Falcão-Filho, J. R. Birge, and F. X. Kärtner, “High-intensity Bessel-Gauss beam enhancement cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMD1 (2010).
  10. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008).
    [CrossRef] [PubMed]
  11. S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
    [CrossRef]
  12. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006).
    [CrossRef] [PubMed]
  13. J. Weitenberg, P. Rußbüldt, I. Pupeza, Th. Udem, H.-D. Hoffmann, and R. Poprawe, “Geometrical on-axis access to high-finesse resonators by quasi-imaging,” (manuscript in preparation).
  14. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
    [CrossRef]
  15. Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [CrossRef]
  16. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010).
    [CrossRef] [PubMed]
  17. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt. 8(1), 189–195 (1969).
    [CrossRef] [PubMed]
  18. D. Esser, W. Bröring, J. Weitenberg, and H.-D. Hoffmann, “Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics,” (manuscript in preparation).
  19. F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
    [CrossRef]
  20. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
    [CrossRef]

2011 (2)

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011).
[CrossRef] [PubMed]

2010 (2)

2008 (4)

D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (4)

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

2000 (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

1980 (1)

Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

1969 (1)

Alahmed, Z. A.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Anderson, S. G.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Apolonski, A.

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Arnaud, J. A.

Azzeer, A. M.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Barty, C. P. J.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Bernhardt, B.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Briles, T. C.

Brown, W. J.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Cingöz, A.

Couillaud, B.

Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Duan, X.-M.

Eidam, T.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Fabre, C.

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Fernandez, A.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Fill, E.

Fuchs, H.-J.

Gibson, D. J.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Gigan, S.

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Gohle, Ch.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Gotlibovych, I.

Graf, R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Grimm, R.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Hänsch, T. W.

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Hänsch, Th. W.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Hartemann, F. V.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Hartouni, E. P.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Herrmann, M.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Jones, R. J.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Kaster, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011).
[CrossRef] [PubMed]

Kley, E.-B.

Kling, M. F.

Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Krausz, F.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Lehr, D.

Limpert, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Lopez, L.

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Maître, A.

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Moll, K. D.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Ozawa, A.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Paschotta, R.

Pervak, V.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Pupeza, I.

Rauschenberger, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Röser, F.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Schibli, T. R.

Schmidt, O.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Schneider, W.

Schuessler, H. A.

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Springer, P. T.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Stebbings, S. L.

Süßmann, F.

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Tremaine, A. M.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Treps, N.

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Tünnermann, A.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Udem, Th.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Vernaleken, A.

Walker, D. R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Wootton, A. J.

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Yang, Y.-Y.

Ye, J.

Yost, D. C.

Zhao, Z.-S.

Zherebtsov, S.

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[CrossRef]

Nature (1)

Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Phys. Rev. ST Accel. Beams (1)

F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005).
[CrossRef]

Proc. SPIE (1)

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011).
[CrossRef]

Other (3)

W. P. Putnam, G. Abram, E. L. Falcão-Filho, J. R. Birge, and F. X. Kärtner, “High-intensity Bessel-Gauss beam enhancement cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMD1 (2010).

D. Esser, W. Bröring, J. Weitenberg, and H.-D. Hoffmann, “Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics,” (manuscript in preparation).

J. Weitenberg, P. Rußbüldt, I. Pupeza, Th. Udem, H.-D. Hoffmann, and R. Poprawe, “Geometrical on-axis access to high-finesse resonators by quasi-imaging,” (manuscript in preparation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Eigen-mode of a quasi-imaging resonator at the position of the obstacle and at the position of maximum intensity on the optical axis in Cartesian geometry with mode number difference Δn = 4. To achieve zero on the optical axis, the modes have to be added with the indicated coefficients and opposite sign. Because the modes acquire a different on-axis phase ϕ at propagation, at a different position they are added with equal sign, which yields an on-axis intensity maximum. The spatial overlap with a Gaussian beam with the same q-parameter can be calculated from the coefficients and is U = 3/11.

Fig. 2
Fig. 2

Quasi-imaging ring resonator. In the middle of the stability range, the Gouy parameter ψy for one round trip in the sagittal transverse direction (orthogonal to the plane of the beam path) is ψy = 3π/2 and the modes GH 0,0 and GH 0,4 are simultaneously resonant. The Gouy parameter acquired in the short arm is ψy ~π and in the long arm ψy ~π/2. The intensity distribution in the transverse direction of the quasi-imaging is shown at selected positions. The slit allows for a geometrical access (blue arrow) to the optical axis which could be used for output coupling of high harmonics generated in a gas jet near the focus.

Fig. 3
Fig. 3

Schematic diagram of the resonances for a scan of the oscillator cavity length Losc . k is the wave number corresponding to the central wavelength of the incident femtosecond pulse train. The relative height of the resonances depends on the spatial overlap with the incident beam and is arbitrarily chosen. Resonances of higher order than 4 are not shown. To a group of resonances with constant sum of the two transverse mode order numbers n + m = r we refer to as r-resonances. The dashed line is an envelope for the resonance height.

Fig. 4
Fig. 4

Experimental setup. (a) Laser, enhancement cavity and locking scheme as in [1], diagnostics: power meter, optical spectrum analyzer. (b) Image of the 100 µm thick on-axis wire with the cavity off resonance.

Fig. 5
Fig. 5

(a) Lock of the slit mode with the wire on the optical axis. Transmitted signal (green, 50 mV/div) and reflected signal (blue, 500 mV/div). The graph shows the fluctuation of the circulating power with time and the meaning of Pcirc and Pcirc max . (b) Measured resonances (transmitted signal, green, 1 mV/div) for a linear scan (PZT signal, magenta, 5 V/div) of the oscillator cavity length without wire (compare Fig. 3). The abscissa is in fact a time axis with 1 ms/div. Transverse mode resonances up to order 4 are visible. Modes with the same sum of the two transverse mode order numbers m + n = const. can be clearly distinguished. The Gouy parameter is ψx = 0.78·2π and ψy = 0.76·2π assuming a linear response of the PZT.

Fig. 6
Fig. 6

Different intensity distributions at the position of the wire on the optical axis in the locked cavity recorded at different positions in the stability range. Besides the wire, no additional obstacle is used here.

Fig. 7
Fig. 7

Measured intensity distribution of the excited slit mode. (a) Image of the plane with the wire on the optical axis and spatial filtering aperture, Gaussian beam radius w = 0.99 mm. Wire and aperture are indicated by dashed lines. (b) Image of a position with maximal intensity on the optical axis, which is 2.4 m before the wire, Gaussian beam radius w = 0.77 mm. (c) Fit of the mode combination c 0·GH 0,0 + c 4·GH 4,0 + c 8·GH 8,0 with complex coefficients to a cut through the intensity distribution from (a). The contribution of the three GH modes is indicated.

Fig. 8
Fig. 8

(a) Power enhancement Pcirc /Pin versus detuning from the resonator degeneracy. The model used here will be described in [13]. (b) Normalized intracavity spectra of the GH 0,0, GH 1,0 and slit mode (logarithmic scale). The curves show that the spectral coupling to the excited transverse modes is identical in all cases.

Tables (1)

Tables Icon

Table 1 Finesse, Enhancement, Spatial Overlap and Pulse Duration for the Different Resonator Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ k , n , m = k L + ( n + 1 2 ) ψ x + ( m + 1 2 ) ψ y

Metrics