Abstract

Electronic Kerr effect in a polyfluorene derivative is used to reversibly switch near infrared probe beam resonantly coupled to a hybrid polymer-silica microspherical resonator. NIR pumping at 780 nm in pulsed laser regime is used for non-linear switching of the WGM resonances that shift as much as 2 GHz for 50 mW of average pump power, compared to a shift of 250 MHz for the same average pump power at CW regime. The absence of temporal drift and the magnitude of this shift confirm the Kerr nature of the switching, ruling out thermooptical effects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
    [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  4. W. P. Acker, D. H. Leach, and R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14(8), 402–404 (1989).
    [CrossRef] [PubMed]
  5. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [CrossRef]
  6. G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
    [CrossRef]
  7. K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
    [CrossRef]
  8. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [CrossRef]
  9. M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
    [CrossRef] [PubMed]
  10. H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
    [CrossRef]
  11. J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
    [CrossRef]
  12. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
    [CrossRef]
  13. V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein).
    [CrossRef]
  14. K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
    [CrossRef]
  15. P. N. Prasad and J. Williams, Introduction to Nonlinear Effects in Molecules and Polymers (Wiley, 1991).
  16. M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for non-linear all optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002).
    [CrossRef]
  17. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
    [CrossRef] [PubMed]
  18. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
    [CrossRef]
  19. U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002).
    [CrossRef]
  20. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30(4), 427–429 (2005).
    [CrossRef] [PubMed]
  21. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [CrossRef]
  22. F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
    [CrossRef]
  23. L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
    [CrossRef]
  24. S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
    [CrossRef] [PubMed]
  25. M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]
  26. F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
    [CrossRef]
  27. S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002).
    [CrossRef]
  28. T. Le, A. Savchenkov, N. Yu, L. Maleki, and W. H. Steier, “Optical resonant sensors: a method to reduce the effect of thermal drift,” Appl. Opt. 48(3), 458–463 (2009).
    [CrossRef] [PubMed]

2010 (6)

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[CrossRef]

F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (1)

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[CrossRef]

2007 (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

2006 (3)

J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

2005 (1)

2003 (2)

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (5)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002).
[CrossRef]

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
[CrossRef]

U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002).
[CrossRef]

M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for non-linear all optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002).
[CrossRef]

1998 (1)

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

1989 (3)

Acker, W. P.

Aktsipetrov, O. A.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Bader, M. A.

Bahtiar, A.

Baldini, F.

Barberi, R.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Berneschi, S.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Bubeck, C.

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

Chang, R. K.

Cheylan, S.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Chinelatto, L. S.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[CrossRef]

Conti, G. N.

Cosi, F.

De Santo, M.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Del Barrio, J.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Dominguez Juarez, J. L.

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[CrossRef]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Féron, P.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Fujii, M.

K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Fukui, M.

K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

Giannetti, A.

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Haraguchi, M.

K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

Hare, J.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Haroche, S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Hörhold, H.-H.

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Koynov, K.

Kozyreff, G.

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[CrossRef]

Laine, J.-P.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
[CrossRef]

Lane, P. A.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
[CrossRef]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[CrossRef]

Le, T.

Leach, D. H.

Lefèvre-Seguin, V.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Lettieri, S.

S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002).
[CrossRef]

Li, Z.-Y.

F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

List, E. J. W.

U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002).
[CrossRef]

Liu, Y.

F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

Maddalena, P.

S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002).
[CrossRef]

Maleki, L.

Marowsky, G.

Martorell, J.

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[CrossRef]

Matranga, M. A.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein).
[CrossRef]

Murzina, T. V.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Niimi, T.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Nunzi Conti, G.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Okamoto, T.

K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

Oriol, L.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

Pereira, S.

Pinol, M.

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Pöllinger, M.

Prasad, M.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

Qin, F.

F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

Raimond, J.-M.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Rauschenbeutel, A.

Razdolski, I. E.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

Roch, J.-F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Rokhsari, H.

Roy, S.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

Said, A. A.

Savchenkov, A.

Scherf, U.

U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002).
[CrossRef]

Sheik-bahae, M.

Soria, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Steier, W. H.

Sychev, F. Yu.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Tamaki, Y.

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

Tapalian, H. C.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
[CrossRef]

Tillmann, H.

Tiribilli, B.

Topolancik, J.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Treussart, F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Trifonov, T.

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30(4), 427–429 (2005).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Van Stryland, E. W.

Vollmer, F.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Yamaguchi, K.

K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Yu, N.

Adv. Mater. (Deerfield Beach Fla.) (1)

U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009).
[CrossRef]

J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Eur. Phys. J. D (1)

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002).
[CrossRef]

J. Appl. Phys. (2)

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002).
[CrossRef]

J. Microsc. (1)

M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003).
[CrossRef] [PubMed]

J. Opt. (1)

F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobio., A (1)

L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010).
[CrossRef]

Laser Photonics Rev. (1)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[CrossRef]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[CrossRef]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Rev. (1)

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Phys. Rev. A (1)

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[CrossRef]

Other (1)

P. N. Prasad and J. Williams, Introduction to Nonlinear Effects in Molecules and Polymers (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental pump-and-probe set-up. Left hand side inset: optical image of the WGMR. Right hand side inset: typical resonance.

Fig. 2
Fig. 2

Chemical structure and linear absorption spectrum of PF(o)n.

Fig. 3
Fig. 3

Closed aperture Z-scan measurement of a film of PF(o)n. The solid line corresponds to the theoretical fit which is in very good agreement with the experimental data (circles).

Fig. 4
Fig. 4

WGM resonance shift versus pump power for CW (dots) and pulsed (open circles) laser regimes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ W R S = λ ( 1 N N T + 1 d d T ) Δ T
Δ λ W R S = λ ( Δ N N ) ;     n 2 = Δ N Δ I

Metrics