Abstract

Amorphous thin films of Ge2Sb2Te5, sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge2Sb2Te5 layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge2Sb2Te5 films provides useful information for furthering research and development efforts in this important area of modern technology.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
    [CrossRef]
  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
    [CrossRef]
  3. J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
    [CrossRef]
  4. I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
    [CrossRef]
  5. T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
    [CrossRef]
  6. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
    [CrossRef]
  7. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
    [CrossRef]
  8. H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
    [CrossRef]
  9. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  10. J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
    [CrossRef]
  11. W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
    [CrossRef]
  12. J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
    [CrossRef]
  13. J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
    [CrossRef] [PubMed]
  14. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
    [CrossRef] [PubMed]
  15. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
    [CrossRef] [PubMed]
  16. F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
    [CrossRef]
  17. K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
    [CrossRef]
  18. A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
    [CrossRef]
  19. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
    [CrossRef]
  20. M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
    [CrossRef] [PubMed]
  21. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
    [CrossRef] [PubMed]
  22. R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
    [CrossRef]
  23. S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
    [CrossRef]
  24. K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
    [CrossRef]
  25. Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
    [CrossRef] [PubMed]
  26. M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
    [CrossRef]
  27. R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
    [CrossRef]
  28. Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
    [CrossRef]
  29. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
    [CrossRef] [PubMed]
  30. F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
    [CrossRef]
  31. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
    [CrossRef]
  32. Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
    [CrossRef]
  33. L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
    [CrossRef]
  34. D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997).
    [CrossRef]
  35. T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
    [CrossRef]
  36. S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
    [CrossRef]
  37. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
    [CrossRef] [PubMed]
  38. S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
    [CrossRef]
  39. S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
    [CrossRef]
  40. B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
    [CrossRef]
  41. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
    [CrossRef]
  42. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]

2010

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

2009

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
[CrossRef]

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

2008

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

2007

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
[CrossRef]

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
[CrossRef]

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

2006

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

2005

M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
[CrossRef] [PubMed]

2004

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

2003

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

2002

T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
[CrossRef]

2001

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

2000

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

1998

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

1997

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997).
[CrossRef]

1995

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

1991

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

1968

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Agarwal, R.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
[CrossRef]

Akahira, N.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Akita, J.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

Bae, B. J.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Battaglia, J. L.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Benvenuti, A.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Bez, R.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

Borg, H. J.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Cai, B. C.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Cai, Y. F.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Cecchini, R.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Chen, B.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Chen, H. K.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Chen, S. H.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Chen, S. Y.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

Cheng, H. W.

Chiang, H. P.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Chiang, H.-P.

Chiu, K. P.

Chong, T. C.

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Chu, C. H.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Cocco, S.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Coombs, J. H.

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Curry, R. J.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Da Shiue, C.

Dekker, M. J.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Elliott, S. R.

J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

Fallica, R.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Fanciulli, M.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Feng, J.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Feng, S. L.

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

Fons, P.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Fu, Y. H.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Fukushima, S.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Gan, F. X.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Gong, Y. F.

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

Gotoh, T.

T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
[CrossRef]

Gotti, A.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Grabowski, B.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Guo, W. R.

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997).
[CrossRef]

Hamann, H. F.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Hassan, M.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Hegedüs, J.

J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

Hewak, D. W.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Hickel, T.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Ho, J. J.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Hong, S. H.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Hosaka, S.

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

Hou, S. P.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Hsieh, J. H.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Hsu, H. W.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Huang, C. C.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Huang, H.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Hwang, J. Y.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Hwang, S. Y.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Ielmini, D.

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

Imai, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Imanaka, R.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Ishibashi, H.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Jacobs, B. A. J.

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Jennings, A. T.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Jongenelis, A.

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Jung, Y.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
[CrossRef]

Kakimoto, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kao, T. S.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Kasai, T.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Ketelaars, B. W.

M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
[CrossRef] [PubMed]

Kitagawa, A.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kitaoka, Y.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Knight, K.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Kojima, K.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kolobov, A. V.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Kozaki, T.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Krbal, M.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Kuijper, M.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Kumeda, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Lacaita, A. L.

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Lai, K. F.

Lai, T. S.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

Lai, Y. F.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Lankhorst, M. H. R.

M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
[CrossRef] [PubMed]

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Lee, H.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Lee, S. H.

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
[CrossRef]

Lencer, D.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Li, J. M.

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

Lim, K. G.

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

Lin, I. C.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Lin, S. K.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Lin, Y. Y.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Mairaj, A.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Mansuripur, M.

Martin, Y. C.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Meng, H.

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

Miao, X. S.

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Monguzzi, C.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Morikawa, T.

M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
[CrossRef]

Nagata, K.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Nakayama, K.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Narumi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Neugebauer, J.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Nishiuchi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Noguchi, T.

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

O’Boyle, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Ohara, S.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ohno, H.

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

Ohta, T.

M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
[CrossRef]

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Ovshinsky, S. R.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Peacock, P. W.

J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
[CrossRef]

Pellizzer, E.

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

Pellizzer, F.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Pirovano, A.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

Qiao, B. W.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Rao, F.

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

Redaelli, A.

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

Rijpers, J. C. N.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Robertson, J.

J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
[CrossRef]

Rooks, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Salinga, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Satoh, I.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Sessions, N.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Shi, L. P.

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Simpson, R. E.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

Song, W. D.

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

Song, Z. T.

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

Sugawara, K.

T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
[CrossRef]

Suzuki, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Takata, M.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

Takenaga, M.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

Tan, P. K.

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Tanaka, K.

T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
[CrossRef]

Tang, T. A.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

Tanida, H.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Terao, M.

M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
[CrossRef]

Teren, A.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Tominaga, J.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Tsai, D. P.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997).
[CrossRef]

Tseng, M. L.

Ubbens, I. P. D.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Uruga, T.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

van Schijndel, M.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Vanesspiekman, W.

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Varesi, E.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Wang, Y.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Wickramasinghe, H. K.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Wiemer, C.

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

Wolters, R. A. M.

M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
[CrossRef] [PubMed]

Wu, B. J.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Wu, L. C.

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

Wu, Y. J.

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

Wu, Y. Q.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Wuttig, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Xiong, K.

J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
[CrossRef]

Yamada, N.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Yang, K. Y.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Yang, P. L.

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Yin, Y.

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

Zhai, F. X.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Zhou, G. F.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Zuo, F. Y.

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009).
[CrossRef]

L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009).
[CrossRef]

W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[CrossRef]

F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010).
[CrossRef]

Electron. Lett.

R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[CrossRef]

IEEE Electron Device Lett.

A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004).
[CrossRef]

IEEE Trans. Electron. Dev.

A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

IEEE Trans. Magn.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

J. Appl. Phys.

J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

J. Chem. Eng. Data

R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009).
[CrossRef]

J. Non-Cryst. Solids

F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010).
[CrossRef]

T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002).
[CrossRef]

J. Optoelectron. Adv. Mater.

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

J. Phys. D Appl. Phys.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007).
[CrossRef]

J. Vac. Sci. Technol. A

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009).
[CrossRef]

L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Nano Lett.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010).
[CrossRef] [PubMed]

Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008).
[CrossRef] [PubMed]

Nat. Mater.

M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005).
[CrossRef] [PubMed]

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008).
[CrossRef] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Semicond. Sci. Technol.

B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009).
[CrossRef]

Thin Solid Films

J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Diagram of the experimental setup, depicting a conductive-tip AFM measuring the local electrical resistivity of a sputter-deposited ZnS-SiO2(130nm)/Au(5nm)/Ge2Sb2Te5(10nm) stack atop a glass substrate. (b) Scanning electron micrograph of the PtIr5-coated probe tip.

Fig. 2
Fig. 2

(a) Reflection optical image of laser-recorded marks on a benchmark sample of glass_substrate/ ZnS-SiO2(130nm)/GST(10nm), using different laser powers, 2mW-20mW, indicated on the vertical axis, and pulse durations, 100ns-1500ns, indicated on the horizontal axis. (b) AFM image of marks recorded on the benchmark sample with different laser powers and pulse durations (6-20 mW, 100-1500 ns). (c) C-AFM image of the same region of the sample as in (b), monitored under Vbias = 50 mV and a current gain of 20 nA/V. No images of the recorded marks have been captured, as no current flows in the absence of the gold electrode.

Fig. 3
Fig. 3

(a) AFM image and its corresponding cross-sectional profile of recorded mark on the benchmark sample with an 18 mW-1300 ns laser pulse. It shows the raised ring at the boundary, the ablated region immediately inside the ring, and accumulated debris at the center of the mark. (b) C-AFM image of the same region of the sample as in (a), and its corresponding cross-sectional profile with the current gain set to 20 nA/V. A weak current, peaking at ~0.7 nA and possibly related to the cross-talk between the AFM tip and the C-AFM electronics, is seen to flow through the boundary region of the ablated mark. (c) Similar to (a), but for a mark recorded with a 4.0 mW-1300 ns pulse. The center of the mark is seen in the AFM image in (c) to have risen by about 6.0 nm above the surface of the sample, while the region surrounding the central bump is depressed by ~1.0 nm. In the absence of the gold electrode, the extremely weak C-AFM signal in (d), peaking at ~0.5 nA and obtained with the current gain factor set to 20 nA/V, is due to noise and cross-talk.

Fig. 4
Fig. 4

(a) AFM image of recorded marks on a sample of glass_substrate/ZnS-SiO2 (130 nm)/Au (5 nm)/ GST (10 nm), using different laser powers (6 mW-20 mW) and pulse durations (100 ns-1500 ns). (b) C-AFM image of the same region of the sample as in (a), monitored with the current gain factor set to 2.0 nA/V. (c) and (d) are AFM and C-AFM images of a mark recorded with an 18 mW-1300 ns pulse on the GST film. In (c), the bright spot at the center of the ablated pit is probably a mixture of GST and Au, but because it is disconnected from the rest of the gold film, it does not produce any C-AFM signal. Certain spots within the raised boundary of the mark conduct electricity, with the current being as large as 10 nA in some regions. (e) AFM image and its corresponding cross-sectional profile indicate that a mark, recorded with a 6 mW-1300 ns pulse, consists of a raised core and a slightly depressed boundary. (f) C-AFM image of the same region of the sample as in (e); only the mark boundary is electrically conductive at several spots.

Fig. 5
Fig. 5

(a) Reflection optical microscope image of marks recorded with different laser powers and pulse durations (2mW-20mW, 100ns-1500ns) on the sample having the stack structure glass/ZnS-SiO2 (130nm)/ Au (5nm)/Ge2Sb2Te5 (10nm). Also written on this sample are straight parallel lines with a cw laser power of 10 mW and a stage velocity of 100 μm/s. The straight lines are ablated and the gold has been evaporated from the bottom of the grooves. (b) SEM image of the same region of the sample as in (a). Marks written at low laser power and with short pulse durations are hardly visible in either image. (c) and (d) are AFM and C-AFM images of recorded marks and straight lines in the same region of the sample, using different laser powers (6 mW-20 mW) and pulse durations (100 ns-1500 ns). The C-AFM image (d) is acquired with the current gain factor set to 1.0 nA/V.

Fig. 6
Fig. 6

AFM and C-AFM images of marks recorded on a GST film with isolated stripes under different laser powers and pulse durations. The C-AFM images and their corresponding cross-sectional profiles were acquired at 50 mV bias voltage, with the current gain set to 1.0 nA/V. (a) AFM image of a mark recorded on a GST film with an 18.0 mW-1300 ns laser pulse. (b) C-AFM image of the same region of the sample as in (a) and its corresponding cross-sectional profile show a strong electrical current – as large as 9 nA in some regions – flowing through the raised ring surrounding the ablated hole. (c) AFM and (d) C-AFM images of a mark recorded with a 4.0 mW-1300 ns laser pulse. (e) The mark recorded with a 4.0 mW-300 ns laser pulse is not visible in this AFM image, but can be seen as a collection of dark spots in the C-AFM image in (f). (g) The mark recorded with a 6.0 mW-100 ns laser pulse is not visible in this AFM image, but can be seen as a faint aggregate of dark spots in the C-AFM image in (h).

Figure 7
Figure 7

C-AFM images of four marks written onto a 10nm-thick GST film using different laser powers and pulse durations. The scale-bar on the right-hand-side of each image shows the corresponding range of the electrical currents monitored during the measurements. In (a) the mark was written with an 18 mW-1300 ns laser pulse, in (b) with a 4.0 mW-1300 ns pulse, in (c) with a 4.0 mW-300 ns pulse, and in (d) with a 6.0 mW-100 ns pulse.

Fig. 8
Fig. 8

SEM images of three marks as well as a short segment from a straight line written onto a GST film. The mark in (a) was written with an 18 mW-1300 ns laser pulse, that in (b) with a 4.0 mW-1300 ns pulse, and that in (c) with a 6.0 mW-100 ns pulse. The straight-line segment in (d) was recorded with a focused 10 mW cw laser beam scanned at 100 μm/s. The tables on the right-hand-side list the concentrations of Au, obtained by electron micro-probe analysis, from regions that are marked and identified by numbers in each micrograph.

Tables (1)

Tables Icon

Table 1 Average C-AFM Currents for Marks Recorded with Different Laser Powers and Pulse Durations

Metrics