Abstract

We present a detailed investigation of the effect of lens size on the focusing performance of plasmonic lenses based on metallic nanoslit arrays with variable widths. The performance parameters considered include the focal length, depth of focus (DOF), full-width half-maximum (FWHM) and the maximum intensity of the focal point. 2D FDTD simulation was utilized. The results show that all the lens parameters are greatly affected by the lens size. A larger lens size, with a total phase difference of at least 2π, will produce a better focusing behavior and a closer agreement with the design. The Fresnel number and diffraction theory can be used to explain the effect of lens size. Suggestions are provided for realization of a practical plasmonic lens using the existing nanofabrication techniques.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  5. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  8. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [CrossRef]
  9. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  10. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
    [CrossRef]
  11. Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
    [CrossRef]
  12. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
    [CrossRef] [PubMed]
  13. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef]
  14. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [CrossRef] [PubMed]
  15. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
    [CrossRef]
  16. G.-G. Zheng and X.-Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 075002 (2009).
    [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  19. T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [CrossRef]
  20. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [CrossRef]
  21. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]
  22. X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18(11), 11683–11688 (2010).
    [CrossRef] [PubMed]
  23. M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
    [CrossRef]
  24. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006).
    [CrossRef] [PubMed]
  25. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13(24), 9834–9840 (2005).
    [CrossRef] [PubMed]

2010

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18(11), 11683–11688 (2010).
[CrossRef] [PubMed]

2009

G.-G. Zheng and X.-Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 075002 (2009).
[CrossRef]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

2008

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

2007

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

2006

2005

2004

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Agrawal, A.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Brantley, C.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Chang, Y.-C.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Chen, M.-K.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Chen, Y.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dong, X.

Du, C.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Edwards, E.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Fedotov, V. A.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

Gao, H.

García-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Genet, C.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18(11), 11683–11688 (2010).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Guo, Y.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Herzig, H. P.

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Kim, H.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Kim, S.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lee, B.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, X.-Y.

G.-G. Zheng and X.-Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 075002 (2009).
[CrossRef]

Lim, Y.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18(11), 11683–11688 (2010).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Luo, C.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Luo, X.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Martín-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Mazurowski, J.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Mote, R. G.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

Nahata, A.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Park, J.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18(11), 11683–11688 (2010).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ruffieux, P.

Ruffin, P.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Scharf, T.

Shi, H.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Shou, X.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Völkel, R.

Wang, C.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Wang, Q.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

Weible, K. J.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

Yang, C.-E.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Yin, S.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Zheludev, N. I.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Zheng, G.-G.

G.-G. Zheng and X.-Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 075002 (2009).
[CrossRef]

Zhou, W.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

J. Mod. Opt.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G.-G. Zheng and X.-Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 075002 (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

M.-K. Chen, Y.-C. Chang, C.-E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Microw. Opt. Technol. Lett. 52(4), 979–981 (2010).
[CrossRef]

Nano Lett.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The calculated results of propagation constant β for different slit widths using gold at a wavelength of 650nm. The dotted line represents the value for a plane electromagnetic wave in air. The inset shows the schematic diagram of the gold-air-gold plasmonic waveguide structure.

Fig. 2
Fig. 2

Schematic of a plasmonic lens based on a gold nanoslit array with variable widths.

Fig. 3
Fig. 3

The required phase retardation at a wavelength of 650 nm from Eq. (2) to achieve the focal length of 3 µm (solid line) and 5 µm (dashed line), and approximated by the array of nanoslits with the width sequence beginning from y = 0 for f_3 (triangles): 30, 30, 30, 32, 32, 34, 36, 40, 44, 50, 60, 78, 12, 12, 12, 14, 14, 14, 16, 18, 20, 22, 24, 28, 34, 44, 64 nm, and for f_5 (squares): 40, 40, 40, 40, 45, 45, 50, 50, 55, 65, 75, 100, 150, 15, 15, 15, 15, 15, 20, 20, 20, 20, 25, 25, 30, 35, 40, 50, 70, 150, 15, 15, 15, 15, 20, 20, 25, 30, 40 nm, both with all the metallic walls of 60 nm in width. Cases a, b, c, and d of f_3 are for the first 12, 19, 24, and all the nanoslits, respectively. Cases a’, b’, c’, and d’ of f_5 are for the first 13, 24, 30, and all the nanoslits, respectively.

Fig. 4
Fig. 4

Simulation results for two plasmonic lenses of f_3. (a), (c) phase and (b), (d) intensity of electric field for cases a and d, respectively. (e) A-A and (f) B-B cross-section of (d), to obtain the performance parameters of focal length, DOF, FWHM and maximum intensity of the focal point. DOF is also defined to half the maximum intensity.

Fig. 5
Fig. 5

FDTD simulation results for the plasmonic lens (case e) with the same lens size as in case d, but only consisting of nanoslits of widths larger than 20 nm. (a) phase and (b) intensity of electric field.

Fig. 6
Fig. 6

FDTD simulation results for the plasmonic lens (case f) with the same lens size as in case d, but changing the slit width to 20 nm for all the nanoslits of widths less than 20 nm. (a) phase and (b) intensity of electric field.

Fig. 7
Fig. 7

FDTD simulation results of the electric-field intensity for plasmonic lenses with film thickness of (a) 500 nm and (b) 200 nm for case d, and film thickness of (c) 500 nm and (d) 200 nm for case f.

Fig. 8
Fig. 8

FDTD simulation results of the electric-field intensity for cases p and q, similar to case e. The thick metallic walls are 460 nm in width, and the film thickness is (a) 400 nm and (b) 200 nm. The width sequence of nanoslits from y = 0 is: 40, 40, 40, 40, 50, 60, 70, 110, 150, 40, 40, 40, 50, 70, 150 nm, all spaced 80 nm apart.

Tables (7)

Tables Icon

Table 1 Deviation of the Focal Length Between the Theoretical Design, Numerical Simulation, and Experimental Measurement (unit: µm)

Tables Icon

Table 2 Derived Performance Parameters for Different Cases of f_3 with Different Lens Size

Tables Icon

Table 3 Derived Performance Parameters for Different Cases of f_5 with Different Lens Size

Tables Icon

Table 4 The Calculated Focal Length and Fresnel Number by Diffraction Theory

Tables Icon

Table 5 Derived Performance Parameters for Different Cases of f_3 with Different Film Thickness, Based on Case d

Tables Icon

Table 6 Derived Performance Parameters for Different Cases of f_3 with Different Film Thickness, Based on Case f (Case e is also Given)

Tables Icon

Table 7 Derived Performance Parameters for the Optimized Plasmonic Lenses of f_3

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tanh ( w β 2 k 0 2 2 ) = β 2 k 0 2 ε m ε m β 2 k 0 2
φ ( y ) = Δ φ = 2 n π + 2 π f λ 2 π f 2 + y 2 λ
F N = ρ 2 λ f 0
I ( Z ) = 4 I 0 sin ( π ρ 2 2 λ Z ) 2
Z m = ρ 2 / λ

Metrics