Abstract

Extraordinary optical transmission of 1D metallic gratings is studied. Experimental samples are fabricated by means of Electron Beam Lithography. The optical characterization is focused on far field transmission properties and in particular on polarization dependence of the incident light. A peculiar symmetry in transmission spectra at different polarization angles is shown; this symmetry is studied both experimentally, and numerically with FEM method. A comparison between numerical and experimental data is provided.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]
  3. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic sub-wavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  4. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [CrossRef]
  5. L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
    [CrossRef] [PubMed]
  6. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  7. S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
    [CrossRef]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  9. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15(4), 1415– 1427 (2007).
    [CrossRef] [PubMed]
  10. Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
    [CrossRef]
  11. F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
    [CrossRef] [PubMed]
  12. A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
    [CrossRef]
  13. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]
  14. D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92(19), 191105 (2008).
    [CrossRef]
  15. S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
    [CrossRef] [PubMed]
  16. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18(19), 19558–19565 (2010).
    [CrossRef] [PubMed]
  17. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13(20), 7760–7771 (2005).
    [CrossRef] [PubMed]
  18. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
    [CrossRef] [PubMed]
  19. L. Rayleigh, “On the dynamical theory of gratings,” P. Roy. Soc. Lond. A. Mat. 79(532), 399–416 (1907).
    [CrossRef]
  20. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

2010 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18(19), 19558–19565 (2010).
[CrossRef] [PubMed]

2008 (4)

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92(19), 191105 (2008).
[CrossRef]

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
[CrossRef] [PubMed]

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

2007 (3)

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15(4), 1415– 1427 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

2005 (4)

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13(20), 7760–7771 (2005).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic sub-wavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

2002 (1)

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” P. Roy. Soc. Lond. A. Mat. 79(532), 399–416 (1907).
[CrossRef]

Arnold, C.

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Bardou, N.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Bustarett, E.

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Chen, Y.

Cho, M. H.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Collin, S.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[CrossRef] [PubMed]

Crouse, D.

De Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic sub-wavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic sub-wavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Genet, C.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Greffet, J. J.

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Haidar, R.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Hibbins, A. P.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92(19), 191105 (2008).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Keshavareddy, P.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Laroche, M.

Lee, Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lockyear, M. J.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92(19), 191105 (2008).
[CrossRef]

Lopez-Rios, T.

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Lu, Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Marquier, F.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Pardo, F.

Pelouard, J. L.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” P. Roy. Soc. Lond. A. Mat. 79(532), 399–416 (1907).
[CrossRef]

Rhee, J. Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Rodrigo, S. G.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Romanato, F.

Rommeluère, S.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Sammito, D.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Vincent, G.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Zacco, G.

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Zilio, P.

Appl. Phys. Lett. (2)

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92(19), 191105 (2008).
[CrossRef]

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic sub-wavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (2)

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through sub-wavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Opt. Express (5)

P. Roy. Soc. Lond. A. Mat. (1)

L. Rayleigh, “On the dynamical theory of gratings,” P. Roy. Soc. Lond. A. Mat. 79(532), 399–416 (1907).
[CrossRef]

Phys. Rev. B (2)

A. Barbara, P. Quémerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence on material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing trough subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example of a fabricated gold grating. It's clearly visible the ITO structure underneath the gold ridges.

Fig. 2
Fig. 2

(colour online) a) Experimental transmission spectra as function of incident light wavelength and polarization angle, from 0° (TM) to 90° (TE). At 630nm a point common to all polarization values is observed. b) Comparison between experimental (continuous lines) and simulated (dashed lines) data for TE and TM transmission spectra.

Fig. 3
Fig. 3

(colour online) FEM simulation of EM field configuration and average power flow at the common point wavelength (630nm) for a gold grating with period of 516 nm, duty cycle set to 50% and gold thickness of 200nm. The colour scale is normalized to the incident EM field a) and b) TE polarization, electric and magnetic field respectively c) and d) TM polarization, electric and magnetic field respectively.

Fig. 4
Fig. 4

(colour online) FEM transmission map (colour scale) as function of grating’s period and incident light wavelength. The duty cycle is kept fixed to 50% and the gold thickness is set to 200nm. Fig. a) refers to TM case. Fig. b) refers to TE case. The letters refers to the different transmission resonances described in the main text.

Fig. 5
Fig. 5

(colour online) FEM map that plots the absolute difference between TE and TM transmission values (Fig. 4) as function of incident light wavelength and grating’s period. Letter CP refers to the “common point” band.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n G = k 0 Re ( ε d ε m ε d + ε m )
d n = n λ / N

Metrics