Abstract

In this paper, we propose and analyze a multilayer AlGaAs/AlOx waveguide structure for efficient microring based second harmonic generation (SHG). Quasi phase matching (QPM) and resonance conditions can be satisfied by designing the width of the waveguide. Linewidth of SHG in microring resonators is formulized and investigated and it is shown that linewidth of wavelength conversion is in the range of subnanometer. Dependence of efficiency of SHG on input power and the loss is investigated for various conditions like single and double microring structures, different coupling coefficients and radii. In low loss condition, larger radius of microring needs lower input power for efficient SHG. Our proposed double microring structure provides 100% conversion efficiency with lower input power as compared with a single microring structure.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B 20(6), 1304–1308 (2003).
    [CrossRef]
  2. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
    [CrossRef] [PubMed]
  3. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
    [CrossRef]
  4. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007).
    [CrossRef] [PubMed]
  5. K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al(2)O(3) waveguides,” Opt. Lett. 26(22), 1785–1787 (2001).
    [CrossRef]
  6. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, “Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities,” Opt. Lett. 31(24), 3626–3628 (2006).
    [CrossRef] [PubMed]
  7. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
    [CrossRef]
  8. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45(6), 646–653 (2009).
    [CrossRef]
  9. J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. C. Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27(6), 1291–1298 (2010).
    [CrossRef]
  10. D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
    [CrossRef]
  11. K. Kawano, and T. Kitoh, Introduction to optical waveguide analysis: solving Maxwell's equations and the Schrödinger equation (Wiley-Interscience, 2001).
  12. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [CrossRef]
  13. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
    [CrossRef]
  14. P. P. Yupapin, T. Chat, and P. Chitsakul, “Mathematical Simulation of Nonlinear Effects in Micro Ring Resonator,” in IEEE Conference on Emerging Technologies - Nanoelectronics,(2006), pp. 316–321.
  15. J. Seres, “Dispersion of second-order nonlinear optical coefficient,” Appl. Phys. B 73(7), 705–709 (2001).
    [CrossRef]

2010 (1)

2009 (2)

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45(6), 646–653 (2009).
[CrossRef]

2008 (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

2007 (2)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (2)

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

Abolghasem, P.

Aitchison, J. S.

Andronico, A.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

Arjmand, A.

Artigas, D.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

Berger, V.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al(2)O(3) waveguides,” Opt. Lett. 26(22), 1785–1787 (2001).
[CrossRef]

Bijlani, B. J.

Bristow, A. D.

Caillet, X.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

Calligaro, M.

Chak, P.

De Rossi, A.

Ducci, S.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

Dumeige, Y.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[CrossRef]

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Fan, S.

Favero, I.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

Fejer, M. M.

Féron, P.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[CrossRef]

Ghiglieno, F.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Guillotel, E.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Han, J. B.

Harris, J. S.

Helmy, A. S.

Huo, Y.

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B 20(6), 1304–1308 (2003).
[CrossRef]

Iyer, R.

Kumar, S. C.

Langlois, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Leo, G.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

Loza-Alvarez, P.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B 20(6), 1304–1308 (2003).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B 20(6), 1304–1308 (2003).
[CrossRef]

Moutzouris, K.

Ortiz, V.

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

Rafailov, E. U.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

Rao, S. V.

Ravaro, M.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Ricolleau, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B 20(6), 1304–1308 (2003).
[CrossRef]

Scaccabarozzi, L.

Seres, J.

J. Seres, “Dispersion of second-order nonlinear optical coefficient,” Appl. Phys. B 73(7), 705–709 (2001).
[CrossRef]

Sibbett, W.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

Sipe, J. E.

Smirl, A. L.

van Driel, H. M.

Yang, Z.

Yu, X.

Appl. Phys. B (1)

J. Seres, “Dispersion of second-order nonlinear optical coefficient,” Appl. Phys. B 73(7), 705–709 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45(6), 646–653 (2009).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron. 40(8), 1122–1130 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

J. Eur. Opt. Soc.Rapid Publ. (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc.Rapid Publ. 3, 08030 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Other (2)

K. Kawano, and T. Kitoh, Introduction to optical waveguide analysis: solving Maxwell's equations and the Schrödinger equation (Wiley-Interscience, 2001).

P. P. Yupapin, T. Chat, and P. Chitsakul, “Mathematical Simulation of Nonlinear Effects in Micro Ring Resonator,” in IEEE Conference on Emerging Technologies - Nanoelectronics,(2006), pp. 316–321.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a single microring resonator structure.

Fig. 2
Fig. 2

Schematic of multilayer AlGaAs/AlOx waveguide.

Fig. 3
Fig. 3

Schematic of a double microring resonator structure.

Fig. 4
Fig. 4

Resonance wavelength of FW (TE) and SH (TM) fields versus width of the waveguide. Resonance wavelength of SH field is multiplied by 2 to be comparable with the wavelength of FW field.

Fig. 5
Fig. 5

Comparison between FDTD method and integrative method. Results of integrative method are fitted on time axes with an approximate round trip time. Inset shows more details for short time response.

Fig. 6
Fig. 6

Comparison between total efficiency of SHG in single and double microring structures (R = 10 μm).

Fig. 7
Fig. 7

Comparison of total efficiency of SHG as a function of input power for various ring radii of a single microring structure.

Fig. 8
Fig. 8

Efficiency of SHG in a single microring versus loss, with R = 10 μm and coupling coefficient as parameter.

Fig. 9
Fig. 9

Total efficiency of SHG normalized to input power versus loss with input power and radius as parameter.

Fig. 10
Fig. 10

Total efficiency of a double microring structure versus Δφ with loss as parameter (R = 10 μm).

Fig. 11
Fig. 11

Effect of refractive index dispersion on total efficiency of SHG in single microring structure versus wavelength detuning. R = 10 μm, λ 0 = 1.5495 μm.

Fig. 12
Fig. 12

Total efficiency of SHG in single microring structure versus wavelength detuning for various phase mismatches. R = 10 μm, λ 0 = 1.5495 μm.

Fig. 13
Fig. 13

Total efficiency of SHG in single microring structure versus wavelength detuning for R = 10 and R = 20 μm.

Tables (1)

Tables Icon

Table 1 Design Parameters of the Structure

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n TM = ( 1 ± 1 m p ) n TE .
{ ( 1 v s t + ξ ) S = α 1 s 2 S + i η ν ( θ ) F 2 e i Δ k ξ ( 1 v p t + ξ ) F = α 1 p 2 F + i η * ν ( θ ) S F * e i Δ k ξ ,
P = 4 ε 0 n ¯ 6 v p 2 v s ( χ ( 2 ) ) 2 ω p 1 ω s 1 ,
A = | ε 0 3 / 2 n ¯ 3 1 2 e T E ( ρ ) e T M ( ρ ) * d ρ | 2 ,
ε 0 n ¯ 2 ( ω F , S , ρ ) | e T E , T M ( ρ ) | 2 d ρ = 1.
[ G 2 G 3 ] = [ τ p , s i κ p , s i κ p , s τ p , s ] [ G 1 G 4 exp ( i k s , p L ) ] ,
{ S 4 n + 1 = S 3 n + 0 L ( α 1 s 2 S ( ξ ) + i η ν ( θ ) F 2 ( ξ ) e i Δ k ξ ) d ξ F 4 n + 1 = F 3 n + 0 L ( α 1 p 2 F ( ξ ) + i η * ν ( θ ) S ( ξ ) F * ( ξ ) e i Δ k ξ ) d ξ ,
S 3 n = i κ s S 1 n + τ s S 4 n exp ( i k s L ) , F 3 n = i κ p F 1 n + τ p F 4 n exp ( i k p L ) ,
P c = 16 P A κ p 4 ( 1 τ s ) 2 κ s 2 L 2 .
R Δ k ( λ ) = 2 π R c . λ ( n e f f s ( λ ) 2 n e f f p ( λ ) ) ,
R Δ k ( λ ) = 2 π R c . λ ( n T M 2 n T E ) .

Metrics