Abstract

Various functional optical devices are integrated on a single chip in order to construct optical current transducers based on polarization rotated reflection interferometry, which consists of polarization maintaining 3-dB couplers, TE-pass polarizers, TE/TM polarization converters, and thermo-optic phase modulators. By virtue of the device integration, the sensor exhibited good linearity, and excellent accuracy with an error less than 0.2%. The integrated-optic device provides inherent polarization maintaining characteristics and precise controllability of the optical path length in the interferometric sensor. Single chip integration reduces the complexity of the interferometry, and enables mass-production of low-cost high performance current sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [CrossRef]
  2. F. Rahmatian, and J. N. Blake, “High-voltage fiber optic current sensors,” in Proc. IEEE PES General Meeting, Montreal, Quebec, (2006), pp. 1129.
  3. M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).
  4. J. D. P. Hrabliuk, “Optical current sensors eliminate CT saturation,” in Proc. 2002 IEEE PES Winter Meeting, 2, pp. 1478–1481.
  5. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25(11), 3602–3609 (2007).
    [CrossRef]
  6. M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
    [CrossRef]
  7. M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
    [CrossRef]
  8. M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
    [CrossRef]
  9. M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
    [CrossRef]
  10. V. Minier, D. Persegol, J. L. Lovato, and A. Kevorkian, “Integrated Optical Current Sensor with low-birefringence optical waveguides”, 12th Int. Conf. on Optical Fiber Sensors, 1997 OSA Technical Digest Series, 16, 104 – 107, (1997).
  11. A. Enokihara, M. Izutsu, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
    [CrossRef]
  12. W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

2010 (1)

2007 (1)

2004 (1)

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

2002 (1)

1999 (2)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
[CrossRef]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[CrossRef]

1995 (1)

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

1987 (1)

A. Enokihara, M. Izutsu, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[CrossRef]

Ajiki, K.

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

Akagi, M.

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

Bohnert, K.

Brandle, H.

Brunzel, M.

Chu, W.-S.

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[CrossRef]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

Enokihara, A.

A. Enokihara, M. Izutsu, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[CrossRef]

Gabus, P.

Hase, S.

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

Hino, M.

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

Hwang, W.-Y.

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

Izutsu, M.

A. Enokihara, M. Izutsu, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[CrossRef]

Kim, H.

Kim, J.-J.

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

Kim, J.-W.

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[CrossRef]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

Kim, K.-J.

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[CrossRef]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

Kim, S.-M.

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

Lee, H.-J.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[CrossRef]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
[CrossRef]

Lee, M.-H.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
[CrossRef]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[CrossRef]

Nehring, J.

Oh, M.-C.

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[CrossRef]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[CrossRef]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
[CrossRef]

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

Seo, J.-K.

Shin, S.-Y.

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

Sueta, T.

A. Enokihara, M. Izutsu, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides,” Appl. Phys. Lett. 67(13), 1821–1823 (1995).
[CrossRef]

Electron. Lett. (1)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “TE-pass and TM-pass waveguide polarizers with buried birefringent polymer,” Electron. Lett. 35(6), 471–472 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[CrossRef]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Waveguide polarization converters incorporating UV-curable reactive mesogen,” IEEE Photon. Technol. Lett. submitted.

J. Lightwave Technol. (4)

Quarterly Rept. Railw. Tech. Res. Inst. (1)

M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” Quarterly Rept. Railw. Tech. Res. Inst. 45, 59–63 (2004).

Other (3)

J. D. P. Hrabliuk, “Optical current sensors eliminate CT saturation,” in Proc. 2002 IEEE PES Winter Meeting, 2, pp. 1478–1481.

F. Rahmatian, and J. N. Blake, “High-voltage fiber optic current sensors,” in Proc. IEEE PES General Meeting, Montreal, Quebec, (2006), pp. 1129.

V. Minier, D. Persegol, J. L. Lovato, and A. Kevorkian, “Integrated Optical Current Sensor with low-birefringence optical waveguides”, 12th Int. Conf. on Optical Fiber Sensors, 1997 OSA Technical Digest Series, 16, 104 – 107, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of the current sensors incorporating the integrated optical current transducer chip. The chip consists of (1) two directional couplers (DC1 and DC2), (2) two waveguide polarizers (Pol), (3) a half-wave plate (HWP), and (4) two phase modulators (PM1 and PM2). The process of polarization conversion at each step is denoted in the figure.

Fig. 2
Fig. 2

Schematic procedures for fabricating the IOCT chip made of polymer waveguide.

Fig. 3
Fig. 3

Photograph of the IOCT chip fabricated on a 4 inch silicon wafer and a single IOCT chip after dicing.

Fig. 4
Fig. 4

Splitting ratios of 3-dB directional couplers obtained from two batches of the device fabrication; the experimental results well correspond to the BPM simulation results.

Fig. 5
Fig. 5

Polarization conversion shown on the Poincaré sphere during the fabrication of the TE/TM polarization converter.

Fig. 6
Fig. 6

Optical interference signals depending on the input polarization states produced by modulating the PM with (a) a 10-Hz triangular source signal. Before the HWP insertion, for TE polarization, the interference signal was observed as shown in (b). After the HWP insertion, no modulation was observed for (c) TE polarization, or (d) TM polarization, while a strong interference signal was observed for 45° polarized light (e).

Fig. 7
Fig. 7

Optical output signal of the OCT responding to an input current of 2.5-kHz rectangular waveform.

Fig. 8
Fig. 8

The final output of the OCT after the signal processing, where the deviation of the output signal from the linear characteristics was within 0.2%.

Metrics