Abstract

A passively Q-switched Nd:YAG/Cr4+:YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr4+:YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M2 factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
    [CrossRef]
  2. M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
    [CrossRef]
  3. M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).
  4. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [CrossRef]
  5. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [CrossRef]
  6. M. Tsunekane, T. Inohara, A. Ando, K. Kanehara, and T. Taira, “High peak power, passively Q-switched Cr:YAG/Nd:YAG micro-laser for ignition of engines,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MB4.
  7. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [CrossRef]
  8. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [CrossRef] [PubMed]
  9. T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
    [CrossRef]
  10. M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
    [CrossRef]
  11. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [CrossRef]
  12. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [CrossRef]
  13. S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
    [CrossRef]
  14. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [CrossRef]
  15. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
    [CrossRef] [PubMed]
  16. M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD8.
  17. T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
    [CrossRef]
  18. N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010).
    [CrossRef] [PubMed]

2010

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010).
[CrossRef] [PubMed]

2009

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[CrossRef]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

2008

2007

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

2006

2005

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).

2001

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

2000

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

1998

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

1995

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

1990

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Alexander, D. R.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Chang, J.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Cho, P.

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

Chung, S. H.

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

Cong, Z. H.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Dascalu, T.

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[CrossRef]

Degnan, J.

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Ko, Y. S.

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

Kofler, H.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Kopecek, H.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).

Kroupa, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Lackner, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

Li, P.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Li, S. T.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Ma, J. X.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Morsy, M. H.

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010).
[CrossRef] [PubMed]

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

Poulain, D. E.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Sakai, H.

Sato, Y.

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[CrossRef] [PubMed]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Tauer, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Tesch, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010).
[CrossRef] [PubMed]

Wang, Q. P.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Weinrotter, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Winter, F.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

Wintner, E.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Zhang, X. L.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Zhang, X. Y.

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Appl. Phys. B

S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007).
[CrossRef]

Appl. Phys. Lett.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Combust. Flame

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001).
[CrossRef]

Exp. Therm. Fluid Sci.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Laser Phys.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[CrossRef]

Laser Phys. Lett.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Opt. Eng.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD8.

M. Tsunekane, T. Inohara, A. Ando, K. Kanehara, and T. Taira, “High peak power, passively Q-switched Cr:YAG/Nd:YAG micro-laser for ignition of engines,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a passively Q-switched, all-ceramics, composite, Nd:YAG/Cr4+:YAG monolithic laser with three-beam output. (b) A photo of a composite medium is shown.

Fig. 2
Fig. 2

Ratio ngf/ngi versus wp/wg and Q-switched laser pulse energy for various laser beam radii wg . Symbols are the experimental values measured with pump line “#A” (●) and pump line “#B” (■).

Fig. 3
Fig. 3

A photo of the composite, all-ceramics passively Q-switched Nd:YAG/Cr4+:YAG monolithic laser with three-beam output is shown.

Fig. 4
Fig. 4

Time delay of the Q-switched laser pulse, time jitter and standard deviation function of pump pulse energy (5-Hz pump repetition rate, 250-μs pump pulse duration).

Tables (1)

Tables Icon

Table 1 Characteristics of the Q-switched Laser Pulses Obtained with Composite Nd:YAG/Cr4+:YAG Ceramics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E p = h ν A g 2 γ g σ g ln R ln ( n g f n g i )
n g i = ln R + L ln T 0 2 2 σ g g [ 1 exp ( 2 a 2 ) ]
( 1 n g f n g i ) + [ 1 + ( 1 δ ) ln T 0 2 β ] ln ( n g f n g i ) + 1 α ( 1 δ ) ln T 0 2 β [ 1 ( n g f n g i ) α ] = 0

Metrics