Abstract

We investigate the performance of a hybrid Q-switched (HQS) fiber laser that is constructed with a low RF-power driven acousto-optic (AO) Q-switch and an AlGaInAs semiconductor saturable absorber. Compared to a pure passively Q-switched (PQS) fiber laser, the ratio of timing jitter to pulse period can be significantly reduced from 2% to 0.3% in the regime of far above threshold. On the other hand, the prelasing effect in a pure actively Q-switched fiber laser can be considerably improved. More importantly, the maximum pulse energy of the HQS fiber laser can be increased approximately 25% in comparison with the result of the PQS fiber laser. At a pump power of 24 W, the highest pulse energy is up to 0.56 mJ with the pulse duration of 50 ns at the repetition rate of 23 kHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
    [CrossRef]
  2. Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, X. Y. Dong, J. L. He, and H. T. Wang, “Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser,” Opt. Lett. 29(7), 724–726 (2004).
    [CrossRef] [PubMed]
  3. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998).
    [CrossRef]
  4. J. Y. Huang, W. Z. Zhuang, W. C. Huang, K. W. Su, C. Hu, K. F. Huang, and Y. F. Chen, “Comparative studies for Cr4+:YAG crystal and AlGaInAs semiconductor used as a saturable absorber in Q-switched Yb-doped fiber lasers,” Opt. Express 17(23), 20800–20805 (2009).
    [CrossRef] [PubMed]
  5. W. Z. Zhuang, W. C. Huang, P. Y. Chiang, K. W. Su, K. F. Huang, and Y. F. Chen, “Millijoule-level Yb-doped photonic crystal fiber laser passively Q-switched with AlGaInAs quantum wells,” Opt. Express 18(26), 27910–27915 (2010).
    [CrossRef]
  6. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
    [CrossRef] [PubMed]
  7. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
    [CrossRef]
  8. T. Hakulinen, R. Koskinen, and O. G. Okhotnikov, “Low jitter Q-switched fiber laser using optically driven surface-normal saturable absorber modulator,” Opt. Express 16(12), 8720–8726 (2008).
    [CrossRef] [PubMed]
  9. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [CrossRef] [PubMed]
  10. D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).
  11. O. M. Stafsudd, O. Ersoy, and S. Pizzica, “CO2 LASER with simultaneous active and passive Q-switching,” Appl. Opt. 10(1), 141–143 (1971).
    [CrossRef] [PubMed]
  12. X. Wang and Z. Xu, “Single-longitudinal-mode operation of a 1 Watt combined actively and passively Q-switched Cr,Nd:YAG laser,” Opt. Express 13(18), 6693–6698 (2005).
    [CrossRef] [PubMed]
  13. M. Arvidsson, B. Hansson, M. Holmgren, and C. Lindstrom, “A combined actively and passively Q-switched microchip laser,” in solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 106–113 (1998).
  14. T. Dascalu, C. Dascalu, and N. Pavel, “Nd:YAG laser continuous wave pumped, Q-switched by hybrid ‘passive-active’ methods,” ROMOPTO 2000: Sixth Conference on Optics, Ed. V.I. Vlad, Bucharest, Romania, September 2000, Proc. SPIE 4430, 52–61 (2001).
  15. S. C. Huang, S. C. Liu, A. Li, K. W. Su, Y. F. Chen, and K. F. Huang, “AlGaInAs quantum-well as a saturable absorber in a diode-pumped passively Q-switched solid-state laser,” Opt. Lett. 32(11), 1480–1482 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

2002 (2)

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

1998 (1)

1971 (1)

Alvarez-Chavez, J. A.

Chen, Y. F.

Chen, Z. J.

Chiang, P. Y.

Clarkson, W. A.

Cole, B.

Dong, X. Y.

Ersoy, O.

Fan, Y. X.

Goldberg, L.

Grudinin, A. B.

Hädrich, S.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Hakulinen, T.

Hays, A.

He, J. L.

Hu, C.

Hu, S. L.

Huang, J. Y.

Huang, K. F.

Huang, S. C.

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

Huang, W. C.

Jin, F.

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

Khurgin, J. B.

Koskinen, R.

Li, A.

Limpert, J.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Liu, S. C.

Lu, F. Y.

Lu, K. C.

McIntosh, C.

Minelly, J. D.

Nilsson, J.

Nodop, D.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Offerhaus, H. L.

Okhotnikov, O. G.

Pizzica, S.

Porta, J.

Richardson, D. J.

Rothhardt, J.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Schilling, B. W.

Solyar, G.

Stafsudd, O. M.

Su, K. W.

Trivedi, S.

Trussell, C. W.

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

Tünnermann, A.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Turner, P. W.

Wang, C. C.

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

Wang, H. J.

Wang, H. T.

Wang, X.

Xu, Z.

Zhuang, W. Z.

Appl. Opt. (2)

Appl. Phys. B (1)

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source,” Appl. Phys. B 74, 367–374 (2002).

Jpn. J. Appl. Phys. (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Other (2)

M. Arvidsson, B. Hansson, M. Holmgren, and C. Lindstrom, “A combined actively and passively Q-switched microchip laser,” in solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 106–113 (1998).

T. Dascalu, C. Dascalu, and N. Pavel, “Nd:YAG laser continuous wave pumped, Q-switched by hybrid ‘passive-active’ methods,” ROMOPTO 2000: Sixth Conference on Optics, Ed. V.I. Vlad, Bucharest, Romania, September 2000, Proc. SPIE 4430, 52–61 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the diode-pumped hybrid Q-switched Yb-doped double-clad fiber laser. HR, high reflection; HT, high transmission; SA, saturable absorber.

Fig. 2
Fig. 2

(a) Dependence of average output power on the launched pump power for the CW and passive Q-switching operations; (b) dependence of pulse period and timing jitter on the launched pump power; (c) the oscilloscope traces of trains of the PQS pulses at various pump powers.

Fig. 3
Fig. 3

The oscilloscope traces of trains of (a) the PQS pulses (period = 512μs) and (b) the HQS pulses (period = 620μs) at the pump power of 3W.

Fig. 4
Fig. 4

The oscilloscope traces of trains of the HQS fiber laser when fAO was (a) higher than 0.8 × fPQS (b) lower than 0.7 × fPQS.

Fig. 5
Fig. 5

(a) The pulse repetition rate of the pure PQS, the pure AQS, and the HQS lasers at the various launched pump powers ; (b) the pulse energy of the three lasers at the various launched pump powers. The green and the blue regions represent the operational repetition rate of the AQS laser and the HQS laser, respectively; (c) the oscilloscope traces of trains of pure AQS laser at various repetition rates under a pump power of 24 W.

Fig. 6
Fig. 6

(a) The pulse period and (b) the corresponding histogram of the pulse period of the PQS and the HQS lasers at the pump power of 3 W. The timing jitter is expressed in terms of standard deviation of the pulse period.

Fig. 7
Fig. 7

The dependence of the ratio of jitter to pulse period of the HQS laser on the duty cycle of loss modulation for the pump power of 3W, 15W, and 24W. The fAO −1 were set 620 μs for Pp of 3W, 55.56 μs for Pp of 15W, and 38.31μs for Pp of 24 W, respectively.

Metrics