N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

G. Fibich, N. Gavish, and X. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations,” Physica D 231, 55–86 (2007).

[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

[CrossRef]

S. Skupin and L. Bergé, “Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion,” Physica D 220, 14–30 (2006).

[CrossRef]

J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).

[CrossRef]

T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14, 5468–5475 (2006).

[CrossRef]
[PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).

[CrossRef]
[PubMed]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).

[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).

[CrossRef]

M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998).

[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1998).

[CrossRef]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).

[CrossRef]
[PubMed]

G. Fibich, V. M. Malkin, and G. C. Papanicolaou, “Beam self-focusing in the presence of a small normal time dispersion,” Phys. Rev. A 52, 4218–4228 (1995).

[CrossRef]
[PubMed]

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz. 95, 1945–1950 (1989).

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[CrossRef]

M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998).

[CrossRef]

S. Skupin and L. Bergé, “Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion,” Physica D 220, 14–30 (2006).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[CrossRef]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).

[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).

[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).

[CrossRef]

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).

[CrossRef]

N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

G. Fibich, N. Gavish, and X. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations,” Physica D 231, 55–86 (2007).

[CrossRef]

T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14, 5468–5475 (2006).

[CrossRef]
[PubMed]

G. Fibich, V. M. Malkin, and G. C. Papanicolaou, “Beam self-focusing in the presence of a small normal time dispersion,” Phys. Rev. A 52, 4218–4228 (1995).

[CrossRef]
[PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14, 5468–5475 (2006).

[CrossRef]
[PubMed]

K. D. Moll and A. L. Gaeta, “Role of dispersion in multiple-collapse dynamics,” Opt. Lett. 29, 995–997 (2004).

[CrossRef]
[PubMed]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).

[CrossRef]
[PubMed]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).

[CrossRef]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).

[CrossRef]
[PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[CrossRef]

N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

G. Fibich, N. Gavish, and X. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations,” Physica D 231, 55–86 (2007).

[CrossRef]

T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14, 5468–5475 (2006).

[CrossRef]
[PubMed]

J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).

[CrossRef]

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).

[CrossRef]

G. Fibich, V. M. Malkin, and G. C. Papanicolaou, “Beam self-focusing in the presence of a small normal time dispersion,” Phys. Rev. A 52, 4218–4228 (1995).

[CrossRef]
[PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

G. Fibich, V. M. Malkin, and G. C. Papanicolaou, “Beam self-focusing in the presence of a small normal time dispersion,” Phys. Rev. A 52, 4218–4228 (1995).

[CrossRef]
[PubMed]

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz. 95, 1945–1950 (1989).

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).

[CrossRef]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).

[CrossRef]
[PubMed]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).

[CrossRef]
[PubMed]

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

S. Skupin and L. Bergé, “Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion,” Physica D 220, 14–30 (2006).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz. 95, 1945–1950 (1989).

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[CrossRef]

M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz. 95, 1945–1950 (1989).

N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14, 5468–5475 (2006).

[CrossRef]
[PubMed]

G. Fibich, N. Gavish, and X. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations,” Physica D 231, 55–86 (2007).

[CrossRef]

J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).

[CrossRef]

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).

[CrossRef]

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).

[CrossRef]

K. D. Moll and A. L. Gaeta, “Role of dispersion in multiple-collapse dynamics,” Opt. Lett. 29, 995–997 (2004).

[CrossRef]
[PubMed]

J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. 17, 583–585 (1992).

[CrossRef]
[PubMed]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).

[CrossRef]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).

[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

[CrossRef]

G. Fibich, V. M. Malkin, and G. C. Papanicolaou, “Beam self-focusing in the presence of a small normal time dispersion,” Phys. Rev. A 52, 4218–4228 (1995).

[CrossRef]
[PubMed]

M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998).

[CrossRef]

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).

[CrossRef]

N. Gavish, G. Fibich, L. T. Vuong, and A. L. Gaeta, “Predicting the filamentation of high-power beams and pulses without numerical integration: a nonlinear geometrical optics method,” Phys. Rev. A 78043807 (2008).

[CrossRef]

J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).

[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).

[CrossRef]
[PubMed]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).

[CrossRef]
[PubMed]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).

[CrossRef]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).

[CrossRef]
[PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[CrossRef]

S. Skupin and L. Bergé, “Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion,” Physica D 220, 14–30 (2006).

[CrossRef]

G. Fibich, N. Gavish, and X. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations,” Physica D 231, 55–86 (2007).

[CrossRef]

N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, “Multiple fractionation of wave structure in a nonlinear medium,” Pis’ma Zh. Eksp. Teor. Fiz. 44, 13–17 (1986).

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz. 95, 1945–1950 (1989).