Abstract

We demonstrate, for the first time, the generation and transmission of polarization-switched QPSK (PS-QPSK) signals at 42.9 Gb/s. Long-haul transmission of PS-QPSK is experimentally investigated in a recirculating loop and compared with transmission of dual-polarization QPSK (DP-QPSK) at 42.9 Gb/s per channel. A reduction in the required OSNR of 0.7 dB was found at a BER of 3.8x10−3, resulting in an increase in maximum reach of more than 30% for a WDM system operating on a 50 GHz frequency grid. The maximum reach of 13640 km for WDM PS-QPSK is, to the best of our knowledge, the longest distance reported for 40 Gb/s WDM transmission, over an uncompensated link, with standard fiber and amplification.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguci, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C – and extended L-band transmission over 240km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC 2010, San Diego, CA, Mar. 21–25, 2009, PDPB7.
  2. J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency),” Proc. ECOC 2010, Paper PD2.1, Sept. 2010.
  3. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” Proc. ECOC 2010, Paper PD2.4, Sept. 2010.
  4. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  5. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  6. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  7. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  8. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” Proc. ECOC 2010, Th.10.E.2, Sept. 2010.
  9. Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers” (2010, April 16) [Online]. Available: www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf
  10. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 × 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” Proc. OFC/NFOEC 2010, Paper PDPB8, Mar. 2010.
  11. E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
    [CrossRef]
  12. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
    [CrossRef]
  13. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  14. D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express 19(9), 8533–8538 (2011).
    [CrossRef] [PubMed]
  15. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
    [CrossRef]
  16. G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, and S. Bigo, M. Astruc, P. Sillard, L. Provost and F. Cérou, “Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre,” Proc. ECOC 2008, Paper Th.3.E.3, Sept. 2008.

2011 (1)

2010 (6)

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

2009 (2)

Agrell, E.

Bayvel, P.

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Behrens, C.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Bosco, G.

Buhl, L. L.

Carena, A.

Curri, V.

Doerr, C. R.

Fatadin, I.

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Forghieri, F.

Gavioli, G.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Gnauck, A. H.

Hellerbrand, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Karlsson, M.

Killey, R. I.

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Magarini, M.

Makovejs, S.

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Millar, D. S.

D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express 19(9), 8533–8538 (2011).
[CrossRef] [PubMed]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

Poggiolini, P.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Savory, S. J.

D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express 19(9), 8533–8538 (2011).
[CrossRef] [PubMed]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Torrengo, E.

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Winzer, P. J.

IEEE J. Sel. Top. Quantum Electron. (2)

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shapes in 112-Gb/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett. 22(23), 1714–1716 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (7)

G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, and S. Bigo, M. Astruc, P. Sillard, L. Provost and F. Cérou, “Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre,” Proc. ECOC 2008, Paper Th.3.E.3, Sept. 2008.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguci, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C – and extended L-band transmission over 240km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC 2010, San Diego, CA, Mar. 21–25, 2009, PDPB7.

J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency),” Proc. ECOC 2010, Paper PD2.1, Sept. 2010.

A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” Proc. ECOC 2010, Paper PD2.4, Sept. 2010.

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” Proc. ECOC 2010, Th.10.E.2, Sept. 2010.

Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers” (2010, April 16) [Online]. Available: www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 × 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” Proc. OFC/NFOEC 2010, Paper PDPB8, Mar. 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Constellation diagrams showing two orthogonal linear polarizations of an experimentally generated PS-QPSK signal. Blue points denote a QPSK symbol which has been transmitted on the x-polarization, while red dots denote a QPSK symbol transmitted on the y-polarization.

Fig. 2
Fig. 2

Experimental set-up to generate and transmit 42.9 Gb/s DP-QPSK (10.725 Gbaud) and PS-QPSK (14.3 Gbaud). DP-QPSK transmitter is shown upper left (a), PS-QPSK transmitter upper right (b), and setup for characterizing back-to-back and transmission performance is shown below (c).

Fig. 3
Fig. 3

Back-to-back measurements. Single-channel and WDM receiver OSNR sensitivity for (a) PS-QPSK and (b) DP-QPSK. The WDM implementation penalty was found to be 1 dB for PS-QPSK and 0.9 dB for DP-QPSK at a BER of 3.8x10−3.

Fig. 4
Fig. 4

Transmission performance of 42.9 Gb/s PS-QPSK and DP-QPSK compared for a 7 channel WDM system on a 50 GHz frequency grid. Maximum reach is compared for a BER of 3.8x10−3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

if | x o u t | > | y o u t | R x = 1 ; R y = 0 ; else R x = 0 ; R y = 1 ; end e x = R x - | x o u t | 2 ; e y = R y - | y o u t | 2 ;
h x x = h x x + μ e x x i n x o u t * ; h x y = h x y + μ e x y i n x o u t * ; h y x = h y x + μ e y x i n y o u t * ; h y y = h y y + μ e y y i n y o u t *
x o u t = h x x H x i n + h x y H y i n ; y o u t = h y x H x i n + h y y H y i n ;

Metrics