Abstract

The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112G bit/s POLMUX-DQPSK signal at the hundreds MHz range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, D. van den Borne, and C. Schulien, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–71 (2008).
    [CrossRef]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
    [CrossRef]
  3. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  4. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  5. N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon. Technol. Lett. 21(4), 203–205 (2009).
    [CrossRef]
  6. C. Zhang, Y. Mori, K. Igarashi, K. Katoh, and K. Kikuchi, “Ultrafast operation of digital coherent receivers using their time-division demultiplexing function,” J. Lightwave Technol. 27(3), 224–232 (2009).
    [CrossRef]
  7. M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “A comparison of electrical and optical dispersion compensation for 111-Gb/s POLMUX–RZ–DQPSK,” J. Lightwave Technol. 27(16), 3590–3598 (2009).
    [CrossRef]
  8. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  9. A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
    [CrossRef]
  10. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  11. Z. Xian, C. Xue, Z. Hai, Z. Weiqing, and F. Yangyang, “Parallel implementation of adaptive equalization for high-speed and real-time optical coherent receivers, “The 19th Annual Wireless and Optical Communications Conference, May 2010.
  12. X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
    [CrossRef]
  13. F. M. Gardner, “Interpolation in digital modems–Part I: fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
    [CrossRef]
  14. L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
    [CrossRef]
  15. C. W. Farrow, “A continuously variable digital delay element, “in Proc. IEEE Int. Symp. Circuits & Syst., Espoo, Finland, vol.3, pp.2641–2645, June 1988.
  16. F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receiver,” IEEE Trans. Commun. 34(5), 423–429 (1986).
    [CrossRef]
  17. F. M. Gardner, Phaselock Techniques, 3rd ed. (Wiley Interscience, 2007).
  18. L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, “All-fiber 90° optical hybrid for coherent communications,” Appl. Opt. 26(3), 437–439 (1987).
    [CrossRef] [PubMed]

2010 (3)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

1993 (2)

F. M. Gardner, “Interpolation in digital modems–Part I: fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[CrossRef]

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[CrossRef]

1987 (1)

1986 (1)

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receiver,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[CrossRef]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Alfiad, M. S.

Bayvel, P.

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Buhl, L. L.

Chen, X.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Chen, Y. K.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Cheung, N. K.

Curtis, L.

de Waardt, H.

Doerr, C. R.

Duthel, T.

Erup, L.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[CrossRef]

Fan, Y.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Fludger, C. R. S.

Gardner, F. M.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[CrossRef]

F. M. Gardner, “Interpolation in digital modems–Part I: fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[CrossRef]

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receiver,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[CrossRef]

Gavioli, G.

Gnauck, A. H.

Grosso, G.

Harris, R. A.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[CrossRef]

Igarashi, K.

Jansen, S. L.

Kaneda, N.

N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon. Technol. Lett. 21(4), 203–205 (2009).
[CrossRef]

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Katoh, K.

Kazovsky, L. G.

Kikuchi, K.

Killey, R. I.

Koc, U. V.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Kuschnerov, M.

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Leven, A.

N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon. Technol. Lett. 21(4), 203–205 (2009).
[CrossRef]

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Li, Z.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Magarini, M.

Mori, Y.

Napoli, A.

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Savory, S. J.

Schulien, C.

van den Borne, D.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Winzer, P. J.

Wuth, T.

Young, W. C.

Zhang, C.

Zhou, W.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Zhou, X.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Zhu, H.

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Appl. Opt. (1)

IEEE Commun. Mag. (1)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon. Technol. Lett. 21(4), 203–205 (2009).
[CrossRef]

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

IEEE Trans. Commun. (3)

F. M. Gardner, “Interpolation in digital modems–Part I: fundamentals,” IEEE Trans. Commun. 41(3), 501–507 (1993).
[CrossRef]

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems–Part II: implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[CrossRef]

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receiver,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. (1)

X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. 2(11), 984–990 (2010).
[CrossRef]

Opt. Express (2)

Other (3)

Z. Xian, C. Xue, Z. Hai, Z. Weiqing, and F. Yangyang, “Parallel implementation of adaptive equalization for high-speed and real-time optical coherent receivers, “The 19th Annual Wireless and Optical Communications Conference, May 2010.

F. M. Gardner, Phaselock Techniques, 3rd ed. (Wiley Interscience, 2007).

C. W. Farrow, “A continuously variable digital delay element, “in Proc. IEEE Int. Symp. Circuits & Syst., Espoo, Finland, vol.3, pp.2641–2645, June 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Block diagram of PDTRL. Z−1: unit delay; l: the number of parallel operation, l = 1,2,3; m: the number of Pus.

Fig. 2
Fig. 2

Farrow structure of LC interpolator.

Fig. 3
Fig. 3

The loop filter’s structure (a) conventional (P + I) LF, (b) accumulated (P + I) LF.

Fig. 4
Fig. 4

NCO relation.

Fig. 5
Fig. 5

The relationship among the values of NCO, the basepoint indexes and the sampling times. (a) Ts = Ti, (b) Ts<Ti, W = Ts/Ti = 0.83 and (c) Ts>Ti, W = Ts/Ti = 1.17. For convenient illustration, the values of Ts/Ti in Fig. 5(b), 5(c) are over far from the real values.

Fig. 6
Fig. 6

Matlab pseudocode of controller for (a) the SDTRL, (b) the PDTRLs.

Fig. 7
Fig. 7

Block diagram of parallel timing recovery and equalization.

Fig. 8
Fig. 8

(a) Simulation setup of the 112-Gbit/s POLMUX-NRZ-DQPSK system, (b),(c) schematics of the DSP.

Fig. 9
Fig. 9

(a) The control word of LF for X-polarization and (b) the fractional interval of controller for X-polarization.

Fig. 10
Fig. 10

(a) The required number of symbols to achieve synchronization and (b) the BER performances vs. the number of PUs for various SCO.

Fig. 11
Fig. 11

(a) The fractional interval of controller, (b) constellation diagrams after timing recovery using PDTRL with 160 PUs.

Fig. 12
Fig. 12

BER vs. the number of PUs for 16.5dB of OSNR, 1000ppm of SCO, (a) 10ps of PMD plus various residue CD, (b) 800ps/nm of CD puls various PMD.

Fig. 13
Fig. 13

BER vs. CD using the SJS and the PJS with 96 PUs respectively for 1000pm of SCO, 800ps/nm of CD, 10ps of PMD and various OSNR.

Tables (1)

Tables Icon

Table 1 Two Calculation Method of NCO

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

X ( k T i ) = x [ ( η k 2 ) T s ] × ( 1 / 6 μ k 3 + 1 / 6 μ k ) +   x [ ( η k 1 ) T s ] × ( 1 / 2 μ k 3 + 1 / 2 μ k 2 μ k )    + x [ ( η k ) T s ] × ( 1 / 2 μ k 3 μ k 2 + 1 / 2 μ k + 1 ) + x [ ( η k + 1 ) T s ] × ( 1 / 6 μ k 3 + 1 / 2 μ k 2 + 1 / 3 μ k ) ,
X ( k T i ) = ( ( ( 1 6 x [ ( η k 2 ) T s ] + 1 2 x [ ( η k 1 ) T s ] 1 2 x [ ( η k ) T s ] + 1 6 x [ ( η k + 1 ) T s ] ) × μ k                + ( 1 2 x [ ( η k 1 ) T s ] x [ ( η k ) T s ] + 1 2 x [ ( η k + 1 ) T s ] ) ) × μ k                + ( 1 6 x [ ( η k 2 ) T s ] x [ ( η k 1 ) T s ] + 1 2 x [ ( η k ) T s ] + 1 3 x [ ( η k + 1 ) T s ] ) ) × μ k              + x [ ( η k ) T s ]   . 
ε l , k = X l , 2 k 1 × [ X l , 2 k X l , 2 ( k 1 ) ] ,
ε l , k = X I l , 2 k 1 × [ X I l , 2 k X I l , 2 ( k 1 ) ] + X Q l , 2 k 1 × [ X Q l , 2 k X Q l , 2 ( k 1 ) ] ,
P l = k 1 ε l , m ,
I l = ( ( ( k 2 ε l , 1 + I l 1 ) + k 2 ε l , 2 ) + ) + k 2 ε l , m     =   k 2 ( ε l , 1 + ε l , 2 + + ε l , m ) + I l 1 ,
W l = P l + I l .
N ( k ) = [ N ( k 1 ) W ( k 1 ) ]   mod-l,
μ k T s N ( k ) = ( 1 μ k ) T s N ( k ) W ( k ) ,
μ k = N ( k ) W ( k ) N ( k ) + N ( k ) = N ( k ) W ( k ) .
η l , k = η l 1 , m + 2 k + Δ η l , k ,
Δ η l , k = k ( N l , k N l , k ) ,

Metrics