Abstract

As an advantage, random lasers may be elaborated from a large variety of materials and do not require any cavity oscillators that usually necessitate complicated and expensive fabrication techniques. Since the feedback process of those non-conventional laser systems is provided by light interference in a disordered medium, spectral and temporal uncertainties are usually considered as an intrinsic part of their optical proprieties. We investigated random laser action under two photon absorption experiments through an auto-organized InGaN/GaN quantum-disks ensemble. Thanks to our experimental approach, we evidence random lasing based on a gain medium constituted by point-sized structures. In such context, a stabilised and individual emission mode is observed as for conventional semiconductor lasers. By controlling the emission energy of these nanostructures, a tuneable and stable random laser may be built. Moreover, our findings suggest that disordered medium should play an important role in the conception of low cost quantum dot and up conversion laser systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Lettokhov, “Quantum statistics of multi-mode radiation from an ensemble of atoms,” Sov. Phys. JETP 26, 835 (1968).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [CrossRef]
  3. W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19(23), 1922–1924 (1994).
    [CrossRef] [PubMed]
  4. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).
  5. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
    [CrossRef]
  6. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
    [CrossRef]
  7. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
    [CrossRef] [PubMed]
  8. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
    [CrossRef]
  9. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
    [CrossRef]
  10. P. Li, Y. C. Wang, and J. Z. Zhang, “All optical fast random number generation,” Opt. Express 18(19), 20360 (2010).
    [CrossRef] [PubMed]
  11. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
    [CrossRef]
  12. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
    [CrossRef] [PubMed]
  13. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
    [CrossRef]
  14. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
    [CrossRef]
  15. A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
    [CrossRef]
  16. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294 (1985).
    [CrossRef]
  17. W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
    [CrossRef] [PubMed]
  18. S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
    [CrossRef]
  19. J. Andreasen and H. Cao, Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063825 (2010).
    [CrossRef]
  20. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
    [CrossRef]
  21. H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
    [CrossRef]
  22. E. Ejder, “Refractive index of GaN,” Phys. Status Solidi (a) .6(2), 445–448 (1971).
    [CrossRef]
  23. J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  24. K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
    [CrossRef] [PubMed]
  25. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
    [CrossRef] [PubMed]
  26. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
    [CrossRef]
  27. W. Koechner, Solid state laser engineering. Springer Series in Optical Sciences (2003).
  28. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
    [CrossRef]
  29. S. Diederik, “Wiersma. Random quantum networks,” Sciences (New York) 327(5971), 1333–1334 (2010).
    [CrossRef]

2011

2010

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

S. Diederik, “Wiersma. Random quantum networks,” Sciences (New York) 327(5971), 1333–1334 (2010).
[CrossRef]

P. Li, Y. C. Wang, and J. Z. Zhang, “All optical fast random number generation,” Opt. Express 18(19), 20360 (2010).
[CrossRef] [PubMed]

J. Andreasen and H. Cao, Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063825 (2010).
[CrossRef]

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

2009

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

2008

W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
[CrossRef] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

2007

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

2006

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

2004

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

2003

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[CrossRef]

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

2002

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

1998

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

1997

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

1994

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19(23), 1922–1924 (1994).
[CrossRef] [PubMed]

1986

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).

1985

1971

E. Ejder, “Refractive index of GaN,” Phys. Status Solidi (a) .6(2), 445–448 (1971).
[CrossRef]

1968

V. S. Lettokhov, “Quantum statistics of multi-mode radiation from an ensemble of atoms,” Sov. Phys. JETP 26, 835 (1968).

Alfano, R. R.

Andreasen, J.

Asatryan, A. A.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Bardoux, R.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Berenger, J. P.

J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Bimberg, D.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Botten, L. C.

Briggs, G. A. D.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Briskina, Ch. M.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).

Byrne, M. A.

Cao, H.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[CrossRef]

J. Andreasen and H. Cao, Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063825 (2010).
[CrossRef]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[CrossRef]

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Chen, Y.

Comput, J.

J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Dawson, M. D.

Diederik, S.

S. Diederik, “Wiersma. Random quantum networks,” Sciences (New York) 327(5971), 1333–1334 (2010).
[CrossRef]

Ejder, E.

E. Ejder, “Refractive index of GaN,” Phys. Status Solidi (a) .6(2), 445–448 (1971).
[CrossRef]

Ema, K.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

Fujita, N.

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Funato, M.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Ge, L.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Green, A. M.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Gu, E.

Guenther, A. H.

Guerin, W.

W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
[CrossRef] [PubMed]

Guffarth, F.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Guilhabert, B.

Heitz, R.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Herrnsdorf, J.

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Humphreys, C. J.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Inose, Y.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Jarjour, A. F.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Jiang, X.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

Kaiser, R.

W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
[CrossRef] [PubMed]

Kaneta, A.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kappers, M. J.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Kawakami, Y.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

Kikuchi, A.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Kishino, K.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Kushi, K.

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

Labonté, L.

Lagendijk, A.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

Laurand, N.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Lettokhov, V. S.

V. S. Lettokhov, “Quantum statistics of multi-mode radiation from an ensemble of atoms,” Sov. Phys. JETP 26, 835 (1968).

Li, P.

Ling, Y.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

Liu, C. H.

Markushev, V. M.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).

Martin, R. W.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Michaud, F.

W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
[CrossRef] [PubMed]

Mitra, S. S.

Mori, M.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Mosk, A. P.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

Nathan, V.

Ohtsuki, T.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

Oliver, R. A.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

Parker, T. J.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Rodt, S.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Sakai, M.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Sasamoto, H.

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Schliwa, A.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Sebbah, P.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[CrossRef]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

Sekiguchi, H.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Sellin, R. L.

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

Sha, W. L.

Soukoulis, C. M.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

Stone, A. D.

Taylor, R. A.

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Tjerkstra, R. W.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

Türeci, H. E.

van der Molen, K. L.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

Vanneste, C.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[CrossRef]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

Wang, Y. C.

Watson, I. M.

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[CrossRef] [PubMed]

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Xu, J. Y.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

Yi, G.-C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

Yoshizawa, M.

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Yu, S. F.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

Zhang, J. Z.

Zhang, Y.

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

Zolin, V. F.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).

Adv. Opt. Photon.

Appl. Phys. Lett.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004).
[CrossRef]

J. Comput. Phys.

J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Cryst. Growth

M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997).
[CrossRef]

Nature

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. E

A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006).
[CrossRef]

Phys. Rev. A

J. Andreasen and H. Cao, Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063825 (2010).
[CrossRef]

Phys. Rev. B

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010).
[CrossRef]

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003
[CrossRef]

S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003).
[CrossRef]

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009).
[CrossRef]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

Phys. Rev. Lett.

W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008).
[CrossRef] [PubMed]

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[CrossRef] [PubMed]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi (a)

E. Ejder, “Refractive index of GaN,” Phys. Status Solidi (a) .6(2), 445–448 (1971).
[CrossRef]

Science

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Sciences (New York)

S. Diederik, “Wiersma. Random quantum networks,” Sciences (New York) 327(5971), 1333–1334 (2010).
[CrossRef]

Sov. Phys. JETP

V. S. Lettokhov, “Quantum statistics of multi-mode radiation from an ensemble of atoms,” Sov. Phys. JETP 26, 835 (1968).

Waves Random Media

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[CrossRef]

Zh. Prikl. Spektrosk

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).

Other

W. Koechner, Solid state laser engineering. Springer Series in Optical Sciences (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscope image from the top of the Q-disks sample; the green circular and dashed line represents laser the spot size under two photon absorption experiments. (b) Simplified schematic of the experimental set up. Micro-photoluminescence spectra acquired at the same location on the quantum disks sample for a laser excitation energy set (c) at 3.1 eV under one photon absorption experiment and (d) at 1.55 eV under two photon absorption. The acquisition time was set at 500 ms and 5 s respectively. In inset of Fig. 1(d) we plotted the power dependency of the integrated intensity of the peaks X and XX.

Fig. 2
Fig. 2

(a) (b) Power dependency spectra obtained under two photon absorption experiment at two different position on the Q-disk sample. (c). Power dependency of the integrated intensity of the peak D plotted in linear scale. In inset of Fig. 2(c), power dependency of the integrated intensity of the peak D’ (see Fig. 2(a)) plotted in log-log scale. (d) Power dependency of the full width at half maximum of the peak D.

Fig. 3
Fig. 3

(a) Spatial distribution of the amplitude of the electric field steady state through the GaN nanocolumn sample calculated by FDTD simulation. The phase difference with the light source is set at zero. (b) Temporal evolution of the calculated electric field amplitude extracted from the point M (see Fig. 3(a)) considering four different light source emission wavelengths.

Fig. 4
Fig. 4

(a) TPA processes at the scale of a single Q-disk: the energy levels 1, 2, and 3 correspond respectively to the ground state of the system, the excited states of the two-dimensional InGaN active layer, and the lowest radiative level of a PS structure state. (b) Sub-ensemble of PS structures selectively excited by TPA and located on the path of a light localized mode. (c) When the emission energy of the sub-ensemble of PS structures matches with the energy resonance of the light localized mode, stimulated emission occurs and gives rise to random laser action.

Metrics