Abstract

We report on an experimental characterization of the sensitivity of localized surface plasmons (LSP) to local changes in the refractive index at a nanometer scale. The method is based on forming a polymer mask covering different well defined areas of metallic nanoparticles and measuring the extinction peak shifts associated with the local refractive index changes. Arrays of nanoparticles (nanorod chains) are prepared using electron beam lithography and the dielectric mask is aligned with respect to the nanoparticle array in a second lithographic step. Extinction peak shifts corresponding to different positions of the mask are measured and values for the local refractive index sensitivity are deduced. A deconvolution procedure is established and used to map the local sensitivity across the surface of nanoparticle based on measured data. The experimental results are shown to correspond well with theoretical simulations obtained using the finite-difference time-domain method. The results indicate that the sensitivity is strongly correlated with the profile of the LSP electric field.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  2. B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
    [CrossRef]
  3. W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
    [CrossRef]
  4. H. X. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 101(39), 14036–14039 (2004).
    [CrossRef] [PubMed]
  5. A. Barnett and E. M. Goldys, “Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing,” Opt. Express 18(9), 9384–9397 (2010).
    [CrossRef] [PubMed]
  6. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
    [CrossRef] [PubMed]
  7. P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
    [CrossRef] [PubMed]
  8. K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
    [CrossRef] [PubMed]
  9. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
    [CrossRef]
  10. D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
    [CrossRef] [PubMed]
  11. J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
    [CrossRef] [PubMed]
  12. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  13. H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
    [CrossRef] [PubMed]
  14. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [CrossRef]
  15. M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
    [CrossRef] [PubMed]
  16. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
    [CrossRef] [PubMed]
  17. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
    [CrossRef]
  18. G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
    [CrossRef]

2010 (6)

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[CrossRef]

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

A. Barnett and E. M. Goldys, “Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing,” Opt. Express 18(9), 9384–9397 (2010).
[CrossRef] [PubMed]

2009 (6)

J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
[CrossRef] [PubMed]

W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

2008 (2)

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

2005 (1)

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

2004 (2)

H. X. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 101(39), 14036–14039 (2004).
[CrossRef] [PubMed]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

1999 (1)

G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
[CrossRef]

Angelome, P. C.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

Arnold, M. D.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Aussenegg, F. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Baev, A.

Barnett, A.

Blaber, M. G.

Chen, S.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Chu, P. K.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Ditlbacher, H.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Dmitriev, A.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Elam, J. W.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Feuz, L.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Ford, M. J.

Fu, J. X.

Galler, N.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Goldys, E. M.

Gunnarsson, L.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Haes, A. J.

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

Hafner, J. H.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

Hao, F.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

Harris, N.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hohenau, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Hohenester, U.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Homola, J.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Höök, F.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Hu, R.

Huang, H. W.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[CrossRef]

Jonsson, M. P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Jönsson, P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Käll, M.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Kleideiter, G.

G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
[CrossRef]

Knoll, W.

G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
[CrossRef]

Koller, D. M.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Krenn, J. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Kvasnicka, P.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[CrossRef] [PubMed]

Law, W. C.

Lechner, M. D.

G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
[CrossRef]

Lechuga, L. M.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

Lee, S.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

Leitner, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Li, H. X.

H. X. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 101(39), 14036–14039 (2004).
[CrossRef] [PubMed]

Liao, B.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

Mayer, K. M.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

Nordlander, P.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

Park, B.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Prasad, P. N.

Reil, F.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Rothberg, L.

H. X. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 101(39), 14036–14039 (2004).
[CrossRef] [PubMed]

Schatz, G. C.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

Stair, P. C.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Svedendahl, M.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Tang, C. R.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Trügler, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

Whitney, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xia, X. D.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Yi, P. G.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Yong, K. T.

Yu, X. Y.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zeng, Y. L.

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

Zhao, Y. P.

Zinovev, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Zou, S. L.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

ACS Nano (1)

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biointerphases (1)

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[CrossRef]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Colloids Surf. B Biointerfaces (1)

H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, “Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods,” Colloids Surf. B Biointerfaces 71(1), 96–101 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(22), 6961–6968 (2004).
[CrossRef]

Macromol. Chem. Phys. (1)

G. Kleideiter, M. D. Lechner, and W. Knoll, “Pressure dependence of thickness and refractive index of thin PMMA-films investigated by surface plasmon and optical waveguide spectroscopy,” Macromol. Chem. Phys. 200(5), 1028–1033 (1999).
[CrossRef]

Nano Today (1)

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[CrossRef]

Nanotechnology (2)

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[CrossRef] [PubMed]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. X. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 101(39), 14036–14039 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Extinction spectra of the nanostructure measured in air and in water. The inset shows an SEM image of the nanoparticle array.

Fig. 2
Fig. 2

SEM images of nanoparticle arrays covered with PMMA masks: (a) center mask, and b) gap mask. The upper right parts of the images show the original (maskless) nanoparticle arrays for comparison. The dimensions of the nanoparticles are 35 nm × 75 nm, the width of one mask stripe is 60 nm.

Fig. 3
Fig. 3

Extinction spectra of the nanostructure coated with PMMA masks at different positions (solid black curve). Experimental results are plotted in (a) for a 45 nm wide center mask and (b) for a 60 nm wide gap mask; SEM images of the respective configurations are attached. Results of FDTD simulations are plotted in (c) for a 50 nm wide center mask (d) for a 50 nm wide gap mask. Extinction spectra corresponding to reference arrays are shown for comparison (i) nanoparticles array completely coated with the mask (blue dash-and-dot curve) and (ii) nanoparticle array without the mask (red dashed curve).

Fig. 4
Fig. 4

(a) Local sensitivity as deduced experimentally using the mask method. Measured peak shifts are plotted as grey horizontal bars – their horizontal position indicates the mask overlap with the nanoparticle and their vertical position indicates the peak shift normalized to mask width and RI; the average (bulk) sensitivity to bulk RI is indicated. The deconvoluted distribution of the sensitivity is plotted as the solid line for one period of the nanoparticle array. (b) Local sensitivity modeled using the FDTD method (solid line). The profile of the electric field intensity is shown for comparison (dashed line). The minor feature at the positions 30 nm and 70 nm is a numerical artifact associated with the discretization of the rounded nanoparticle tips. The nanoparticle is visualized in the graphs for reference.

Metrics