Abstract

In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm−1 are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [CrossRef] [PubMed]
  2. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  5. T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [CrossRef]
  6. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
    [CrossRef]
  7. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [CrossRef]
  8. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  9. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [CrossRef]
  10. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
    [CrossRef] [PubMed]
  11. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  12. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
    [CrossRef]
  13. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).
  14. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  15. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  16. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [CrossRef]
  17. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005).
    [CrossRef] [PubMed]
  18. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
    [CrossRef] [PubMed]
  19. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  20. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
    [CrossRef]
  21. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [CrossRef] [PubMed]
  22. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [CrossRef] [PubMed]
  23. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  24. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
    [CrossRef]
  25. A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
    [CrossRef]
  26. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010).
    [CrossRef] [PubMed]
  27. A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008).
    [CrossRef]
  28. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  29. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).
  30. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
    [CrossRef] [PubMed]

2010 (5)

2009 (3)

2008 (5)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[CrossRef]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[CrossRef] [PubMed]

A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
[CrossRef]

A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008).
[CrossRef]

2007 (4)

2006 (2)

2005 (2)

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

2001 (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

1999 (1)

1981 (1)

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Abbott, D.

Adam, A. J. L.

Afshar V, S.

Allard, J.-F.

Atakaramians, S.

Bang, O.

Birch, J. R.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Bitzer, A.

A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010).
[CrossRef] [PubMed]

A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
[CrossRef]

A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008).
[CrossRef]

Bowden, B.

Cao, Q.

Chang, H.-C.

Chen, H.-W.

Chen, L.-J.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Désévédavy, F.

Dromey, J. D.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Dubois, C.

Dupuis, A.

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[CrossRef] [PubMed]

A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
[CrossRef] [PubMed]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).

Ebendorff-Heidepriem, H.

Fischer, B. M.

Gallot, G.

George, R.

Grischkowsky, D.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
[CrossRef]

Gu, J. F.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Harrington, J.

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[CrossRef]

Helm, H.

A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
[CrossRef]

Hochrein, T.

Ito, H.

Ito, T.

Jahns, J.

Jansen, C.

Jeon, T.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Jepsen, P. U.

Jördens, C.

Kao, T.-F.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Koch, M.

Krumbholz, N.

Kurz, H.

Lai, C.-H.

Lesurf, J.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Marchewka, A.

Matsuura, Y.

Mazhorova, A.

McGowan, R. W.

Mendis, R.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

Minamide, H.

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Monro, T. M.

Morandotti, R.

Morris, D.

Mueller, E.

Nagel, M.

Nielsen, K.

Ortner, A.

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Peccianti, M.

Pedersen, P.

Peng, J.-L.

Peters, O.

Planken, P. C. M.

Rasmussen, H. K.

Rozé, M.

Salhi, M.

Scheller, M.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

Skorobogatiy, M.

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[CrossRef] [PubMed]

A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
[CrossRef] [PubMed]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).

Stoeffler, K.

Sun, C.-K.

Tang, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tsuneyuki, O.

Ung, B.

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).

Vieweg, N.

Walther, M.

A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010).
[CrossRef] [PubMed]

A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
[CrossRef]

A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Wang, Y.

Wietzke, S.

You, B.

Zhang, J.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

Infrared Phys. (1)

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

J. Opt. Soc. Am. B (2)

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (11)

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005).
[CrossRef] [PubMed]

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[CrossRef] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[CrossRef] [PubMed]

A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).

Supplementary Material (2)

» Media 1: MOV (2657 KB)     
» Media 2: MOV (2342 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross-section of the suspended core fiber (OD = 5.1 mm), and (b) close-up view of the suspended core region (dcore ∼150 µm). (c) Cross-section of the porous core fiber (OD = 3 mm), and (d) close-up view of the suspended large porous core (dcore = 900 µm).

Fig. 2
Fig. 2

Near-field microscopy images (upper row and Media 1) and corresponding simulations (lower row) of the output |Ex|-field profile of the suspended small solid core fiber at 0.16, 0.30 and 0.48 THz.

Fig. 6
Fig. 6

Ex-field amplitude as measured by the near-field THz-TDS probe between 0.01 and 0.80 THz for the case of (a) suspended small core fiber, (b) suspended large porous core fiber. Corresponding numerical simulations of the amplitude transmission through (c) suspended small solid core fiber, (d) suspended large porous core fiber.

Fig. 7
Fig. 7

(a) Power propagation losses, measured by cutback, of the suspended small solid core fiber, and (b) porous core fiber as a function of frequency. Dashed line corresponds to quadratic fit of the bulk material losses.

Fig. 3
Fig. 3

Near-field microscopy images (upper row and Media 2) and corresponding simulations (lower row) of the output |Ex|-field profile of the suspended large porous core fiber at 0.10, 0.16 and 0.30 THz.

Fig. 4
Fig. 4

Gaussian beam waist parameter [σ in Eq. (3)] as a function of input wavelength as measured with the THz near-field microscopy setup (dots), and modeled by a linear fit (solid line).

Fig. 5
Fig. 5

Refractive index (a) and losses (b) of polyethylene between 0.10 THz and 1THz. The inset picture in Fig. 2(a) presents the polyethylene slab used for both measurements.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o u t p u t ( x , y , ω ) = m = 1 N C m E m ( x , y , ω ) e i ω c ( n eff, m L w ) e α m L w 2
C m = 1 4 [ E i n p u t x ( x , y ) H m y ( x , y ) + E m x ( x , y ) H i n p u t y ( x , y ) ] d x d y
E i n p u t ( x , y ) x ^ 2 P π σ 2 n c l a d exp [ ( x 2 + y 2 ) 2 σ 2 ] H i n p u t ( x , y ) y ^ 2 P n c l a d π σ 2 exp [ ( x 2 + y 2 ) 2 σ 2 ]
T f i b e r ( ω ) | E o u t p u t ( x 0 , y 0 , ω ) | = | m = 1 N C m E m ( x 0 , y 0 , ω ) e i ω c ( n eff, m L w ) e α m L w 2 |

Metrics