Abstract

We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  2. M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
    [CrossRef] [PubMed]
  3. A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
    [CrossRef]
  4. A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
    [CrossRef]
  5. D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
    [CrossRef]
  6. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
    [CrossRef]
  7. A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).
  8. J. H. Lehman and X. Li, “A transfer standard for optical fiber power metrology,” Appl. Opt. 38, 7164–7166 (1999).
  9. I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publication 250–56 (2000).

2010

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

2008

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[CrossRef] [PubMed]

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
[CrossRef]

2005

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

2003

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

1999

Browne, D. E.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[CrossRef] [PubMed]

Calkins, B.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

Clement, T. S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Gerrits, T.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Glancy, S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Knill, E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Lehman, J. H.

Li, X.

Lita, A. E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

Martinis, J. M.

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

Migdall, A. L.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Miller, A. J.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

Mirin, R. P.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Nam, S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

Pellouchoud, L. A.

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

Rudolph, T.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[CrossRef] [PubMed]

Sergienko, A. V.

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

Varnava, M.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. J. Miller, S. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791 – 793 (2003).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Opt. Exp.

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp. 16, 3032–3040 (2008).
[CrossRef]

Phys. Rev. A

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 61803 (2005).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Phys. Rev. Lett.

M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[CrossRef] [PubMed]

Proc. SPIE

A. E. Lita, B. Calkins, L. A. Pellouchoud, A. J. Miller, and S. Nam, “Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors,” Proc. SPIE 7681, 76810D–1–10 (2010).

Other

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publication 250–56 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Complete fiber-to-detector assembly showing (a) single-mode fiber terminated in a stainless steel and zirconia ferrule inserted into (b) a zirconia alignment sleeve (outlined for clarity). The completed detector and substrate (c) has wiring along a silicon “tongue” (d) that extends out the zirconia sleeve (e) and is wirebonded to pins (f) that allow electrical connection to cryogenic pre-amplifiers. A fully assembled device viewed via through-wafer infrared imaging showing (g) the laser light (bright) centered on the 25 μm×25 μm square device (dark square). A complete cryogenic assembly (h) containing 16 self-aligned, fiber-coupled photon-number-resolving devices.

Fig. 2
Fig. 2

Result of the measurement of the alignment error from 35 assembled transition-edge sensor photon counters by use of the self-aligning fiber-to-detector method. The average radial displacement was ∼3 μm, consistent with the intentional 3 μm substrate undersizing.

Fig. 3
Fig. 3

Absolute reflectance of eight fiber-coupled devices with maximum absorption at a wavelength near 1580 nm. Reflectance was measured via fiber back-reflection at room temperature.

Fig. 4
Fig. 4

Multiple-attenuator method for measuring the single-photon detection efficiency of a device under test (DUT).

Fig. 5
Fig. 5

Setup for power meter nonlinearity calibration. Power measurement V 1 is taken with shutter 2 closed, V 2 is taken with shutter 1 closed, and V 3 is taken with both shutters open. The extra mandrel of optical fiber is chosen so that the path difference is much longer than the coherence length of the source. Comparing the three measurements at a given power level indicates the local nonlinearity of the power meter.

Fig. 6
Fig. 6

Example dynamic calibration curves for a wavelength of 1550 nm. Calibrated input power levels are given by (measured power)/(correction factor).

Fig. 7
Fig. 7

Example dynamic calibration curves for a wavelength of 860 nm. Calibrated input power levels are given by (measured power)/(correction factor).

Fig. 8
Fig. 8

System detection efficiency results in absolute percent for self-aligned TES devices from four separate wafer fabrication runs. Devices are optimized for optimal efficiency at a wavelength of 805 nm (○), 850 nm (+), and 1550 nm (×). Points at each wavelength are arbitrarily offset horizontally for clarity. Efficiency measurements were made using pulsed diode laser sources at the design wavelength of each device.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η system = η fiber η coupling η absorption η QE η trigger ,
P true = C a R ( V + k = 2 n b R , k V k ) ,
( V 3 V 1 V 2 ) + k = 2 n b R , k ( V 3 k V 1 k V 2 k ) = 0.

Metrics