Abstract

We introduce a new algorithm for calculating computer generated hologram (CGH) using ray-sampling (RS) plane. RS plane is set at near the object and the light-rays emitted by the object are sampled at the plane. Then the light-rays are transformed into the wavefront with using the Fourier transforms. The wavefront on the CGH plane is calculated by wavefront propagation simulation from RS plane to CGH plane. The proposed method enables to reproduce high resolution image for deep 3D scene with angular reflection properties such as gloss appearance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).
  2. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–406 (1966).
  3. J. S. Underkoffler, “Occlusion processing and smooth surface shading for fully computed synthetic holography,” Proc. SPIE 3011, 53–60 (1997).
  4. K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).
  5. K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48(34), H203–H211 (2009).
    [PubMed]
  6. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [PubMed]
  7. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [PubMed]
  8. P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).
  9. H. Yoshikawa and H. Kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
  10. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
  11. J. T. McCrickerd, “Comparison of stereograms: pinhole, fly’s eye, and holographic types,” J. Opt. Soc. Am. A 62(1), 64–70 (1972).
  12. L. E. Helseth, “Optical transfer function of three-dimensional display systems,” J. Opt. Soc. Am. A 23(4), 816–820 (2006).
  13. P. S. Hilaire, “Modulation transfer function and optimum sampling of holographic stereograms,” Appl. Opt. 33(5), 768–774 (1994).
    [PubMed]
  14. I. Glaser and A. A. Friesem, “Imaging properties of holographic stereograms,” Proc. SPIE 120, 150–162 (1977).
  15. M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).
  16. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [PubMed]
  17. W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
  18. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15(9), 5631–5640 (2007).
    [PubMed]
  19. H. Yoshikawa and K. Takei, “Development of a compact direct fringe printer for computer-generated holograms,” Proc. SPIE 5290, 114–121 (2004).
  20. R. P. Muffoletto, “Numerical techniques for Fresnel diffraction in computational holography,” Ph. D. Thesis (Louisiana State University, 2006).
  21. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [PubMed]

2009

2008

2007

2006

2005

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

2004

H. Yoshikawa and K. Takei, “Development of a compact direct fringe printer for computer-generated holograms,” Proc. SPIE 5290, 114–121 (2004).

1997

J. S. Underkoffler, “Occlusion processing and smooth surface shading for fully computed synthetic holography,” Proc. SPIE 3011, 53–60 (1997).

1995

H. Yoshikawa and H. Kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).

1994

1993

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).

M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).

1992

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).

1977

I. Glaser and A. A. Friesem, “Imaging properties of holographic stereograms,” Proc. SPIE 120, 150–162 (1977).

1976

1972

J. T. McCrickerd, “Comparison of stereograms: pinhole, fly’s eye, and holographic types,” J. Opt. Soc. Am. A 62(1), 64–70 (1972).

1966

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–406 (1966).

Barabas, J.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Bove, V. M.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Burge, R. E.

P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).

Friesem, A. A.

I. Glaser and A. A. Friesem, “Imaging properties of holographic stereograms,” Proc. SPIE 120, 150–162 (1977).

Glaser, I.

I. Glaser and A. A. Friesem, “Imaging properties of holographic stereograms,” Proc. SPIE 120, 150–162 (1977).

Halle, M.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Helseth, L. E.

Hilaire, P. S.

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

Hossack, W. J.

P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).

Kameyama, H.

H. Yoshikawa and H. Kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).

Kang, H.

Lucente, M.

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).

Matsushima, K.

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[PubMed]

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

McCrickerd, J. T.

J. T. McCrickerd, “Comparison of stereograms: pinhole, fly’s eye, and holographic types,” J. Opt. Soc. Am. A 62(1), 64–70 (1972).

McOwan, P. W.

P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).

Mishina, T.

Muffoletto, R. P.

Nakahara, S.

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).

Okano, F.

Okui, M.

Pappu, R.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Plesniak, W.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Sakamoto, Y.

Takei, K.

H. Yoshikawa and K. Takei, “Development of a compact direct fringe printer for computer-generated holograms,” Proc. SPIE 5290, 114–121 (2004).

Tohline, J. E.

Tyler, J. M.

Underkoffler, J. S.

J. S. Underkoffler, “Occlusion processing and smooth surface shading for fully computed synthetic holography,” Proc. SPIE 3011, 53–60 (1997).

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–406 (1966).

Yamaguchi, K.

Yamaguchi, M.

M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

Yamaguchi, T.

Yatagai, T.

Yoshikawa, H.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[PubMed]

H. Yoshikawa and K. Takei, “Development of a compact direct fringe printer for computer-generated holograms,” Proc. SPIE 5290, 114–121 (2004).

H. Yoshikawa and H. Kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).

Appl. Opt.

Appl. Phys. Lett.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–406 (1966).

J. Opt. Soc. Am. A

L. E. Helseth, “Optical transfer function of three-dimensional display systems,” J. Opt. Soc. Am. A 23(4), 816–820 (2006).

J. T. McCrickerd, “Comparison of stereograms: pinhole, fly’s eye, and holographic types,” J. Opt. Soc. Am. A 62(1), 64–70 (1972).

Jpn. J. Opt.

M. Yamaguchi, N. Ohyama, and T. Honda, “Imaging characteristics of holographic stereogram,” Jpn. J. Opt. 22(11), 714–720 (1993) (in Japanese).

Opt. Commun.

P. W. McOwan, W. J. Hossack, and R. E. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(12), 6–11 (1993).

Opt. Eng.

W. Plesniak, M. Halle, V. M. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).

Opt. Express

Proc. SPIE

I. Glaser and A. A. Friesem, “Imaging properties of holographic stereograms,” Proc. SPIE 120, 150–162 (1977).

H. Yoshikawa and K. Takei, “Development of a compact direct fringe printer for computer-generated holograms,” Proc. SPIE 5290, 114–121 (2004).

H. Yoshikawa and H. Kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).

J. S. Underkoffler, “Occlusion processing and smooth surface shading for fully computed synthetic holography,” Proc. SPIE 3011, 53–60 (1997).

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).

Other

R. P. Muffoletto, “Numerical techniques for Fresnel diffraction in computational holography,” Ph. D. Thesis (Louisiana State University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The CGH calculation model based on light-ray information. In (a), a projection image is obtained using light-ray based rendering, where the center of projection is each sampling point on the hologram plane. Each projection image is Fourier transformed to derive the wavefront at each elementary hologram cell shown in (b). Tiling each hologram cell calculated in this manner, the whole hologram pattern is obtained. In reconstruction, the light-rays from the objects are reconstructed from all the elementary hologram cells, and 3D image can be observed.

Fig. 2
Fig. 2

Influence of light-ray sampling for the image resolution.

Fig. 3
Fig. 3

Principle of the proposed CGH calculation using RS plane.

Fig. 4
Fig. 4

The model of RS plane and projection images at each light-ray sampling point.

Fig. 5
Fig. 5

Schematic of obtaining the projection images. (a) The projection images can be obtained by direct projection using general CG rendering technique; (b) The projection image can be obtained from multi-view images by applying IBR technique.

Fig. 6
Fig. 6

A diagram of converting the light-ray information into the wavefront on the RS plane.

Fig. 7
Fig. 7

Discrete wavefront WRS [kRS , lRS ] on the RS plane.

Fig. 8
Fig. 8

Calculation of light propagation for the objects located at various distances.

Fig. 9
Fig. 9

Schematic of the CGH printer.

Fig. 10
Fig. 10

The object model of calculated CGH by using RS plane.

Fig. 11
Fig. 11

Reconstructed images by numerical simulation. (a) object 1 reproduced by HSCGH; (b) object 1 reproduced by proposed method; (c) object 2 reproduced by HSCGH; (d) object 2 reproduced by proposed method.

Fig. 12
Fig. 12

The object models of calculated CGH by proposed method.

Fig. 13
Fig. 13

Reconstructed image by numerical simulation and optical reconstruction. (a) and (d) Perspective image of each object; (b) and (e) Reconstructed image by simulation; (c) and (f) Optical reconstructed image.

Fig. 14
Fig. 14

The case of setting the RS plane on the object surface.

Tables (4)

Tables Icon

Table 1 The Parameters of the CGH Printer

Tables Icon

Table 2 Parameters of CGH Calculation

Tables Icon

Table 3 Parameters of CGH Calculation

Tables Icon

Table 4 Estimated Resolution of the Image in Subsection 4.2

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ r s = p r s W ( z + W ) .
δ a = | z | Δ θ a .
δ d λ | z | a r s ,
P i j [ k , l ] = FFT { p i j [ m , n ] exp { j ϕ i j [ m , n ] } } = P i j ( ( k M 2 ) Δ k R S , ( l N 2 ) Δ l R S ) ,
W R S [ k R S , l R S ] = i = 0 I 1 j = 0 J 1 P i j [ k R S x i Δ k R S + M 2 , l R S y j Δ l R S + N 2 ] ,
W O ( X , Y ) = 1 j λ R exp [ j 2 π R λ ] W R S ( x , y ) exp [ j 2 π λ ( X x ) 2 + ( Y y ) 2 2 R ] d x d y ,
W O [ k H , l H ] = k R S = 0 I M 1 l R S = 0 J N 1 W R S [ k R S , l R S ]                 × exp [ j 2 π λ ( k H Δ k H k R S Δ k R S ) 2 + ( l H Δ l H l R S Δ l R S ) 2 2 R ]           = A O [ k H , l H ] exp { j φ O [ k H , l H ] } ,
H [ k H , l H ] = c + 2 Re { A O [ k H , l H ] exp [ j φ O [ k H , l H ] j 2 π l H Δ l H λ sin θ r e f ] }         = c + 2 A O cos { φ [ k H , l H ] 2 π l H Δ l H λ sin θ r e f } ,
θ x _ max = sin 1 λ 2 Δ k R S , θ y _ max = sin 1 λ 2 Δ l R S ,

Metrics