Abstract

We report here a broadband reflector based on a two cross-stacked grating structure. This type of broadband reflector is polarization-independent, with ~100% reflectance over a designed spectral range of 1.4 to 1.6μm. The reflection phase differences between TE and TM polarizations remain almost a constant value of 1.2π over the same high reflection spectral range. The reflector performance tolerance was also investigated by varying the grating structure parameters. Two types of Fabry-Perot cavities can be configured based on two cross-stacked grating structures, for both polarization independent and polarization dependent resonance cavity mode control. All these characteristics associated with the cross-stacked grating reflectors enable a new type of resonant cavity or wave plate design for a large range of photonic applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. B 124(6), 1866–1878 (1961).
    [CrossRef]
  2. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  3. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [CrossRef] [PubMed]
  4. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
    [CrossRef] [PubMed]
  5. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
    [CrossRef]
  6. T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” J. Opt. Soc. Am. A 26(3), 559–565 (2009).
    [CrossRef]
  7. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
    [CrossRef]
  8. M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35(8), 1121–1123 (2010).
    [CrossRef] [PubMed]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [CrossRef]
  10. S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
    [CrossRef]
  11. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
    [CrossRef] [PubMed]
  12. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [CrossRef]
  13. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  14. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
    [CrossRef]
  15. D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
    [CrossRef]
  16. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
    [CrossRef]

2010

M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35(8), 1121–1123 (2010).
[CrossRef] [PubMed]

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
[CrossRef]

2009

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” J. Opt. Soc. Am. A 26(3), 559–565 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

2008

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

2004

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

2003

2002

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. B 124(6), 1866–1878 (1961).
[CrossRef]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

Ben Bakir, B.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

Boutami, S.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chase, C.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Chen, H.

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chuwongin, S.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Fan, S.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. B 124(6), 1866–1878 (1961).
[CrossRef]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Ji, S.

Ji, Y.

Jiang, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Johnson, E. G.

Karagodsky, V.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Kilic, O.

Kim, S.

Leclercq, J. L.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

Lousse, V.

Ma, Z.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
[CrossRef]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Morris, G. M.

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Regreny, P.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

Sang, T.

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Shokooh-Saremi, M.

Solgaard, O.

Suh, W.

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Thurman, S. T.

Viktorovitch, P.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

Wang, L.

Wang, Z.

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Yang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Yang, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Zhao, D.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
[CrossRef]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Zhou, W.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
[CrossRef]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Zhou, Z.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

Appl. Opt.

Electron. Lett.

S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

J. Opt.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009).
[CrossRef]

Nat. Photonics

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. B 124(6), 1866–1878 (1961).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Proc. SPIE

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) and (c): Sketches of the subwavelength grating Fano reflectors with a single layer and two cross-stacked layers, respectively; (b) and (d): The reflections of TE(dash lines) and TM(solid lines) polarization of sl-SWG and cs-SWG, respectively.

Fig. 2
Fig. 2

Simulated reflection amplitude R for both TE (red dash lines) and TM (blue solid lines) polarizations, simulated reflection phase ϕR for TE (red dash lines with square holes) and TM (blue dash lines with circle holes), as well as the calculated phase difference between TE and TM |ϕTE - ϕTM| (black dash lines with triangle holes) for cs-SWG structures with Si thickness t1 = t2 = 230nm, grating period Λ = 980nm, fill factors f1 = 0.2, and different fill factors f2: (a) f2 = 0.2; (b) f2 = 0.18; (c) f2 = 0.22.

Fig. 3
Fig. 3

Reflection of TE (red dash lines) and TM (blue solid lines) polarizations at t1 = 230nm, Λ1 = Λ2 = 980nm, f1 = f2 = 0.2: (a) t2 = 220nm; (b) t2 = 230nm; (c) t2 = 240nm.

Fig. 4
Fig. 4

Reflection of TE(red dash lines) and TM(blue solid lines) polarizations at Λ1 = 980nm, t1 = t2 = 230nm, f1 = f2 = 0.2: (a) Λ2 = 960nm; (b) Λ2 = 980nm; (c) Λ2 = 1000nm.

Fig. 5
Fig. 5

Reflection of TE (red dash lines) and TM (blue solid lines) polarizations at t1 = t2 = 230nm, Λ = 980nm, f1 = f2 = 0.2: (a) with glass substrate; (b) with SOI substrate.

Fig. 6
Fig. 6

Configurations of FP cavities with two cs-SWGs: (a) face to back (FtB); (b) face to face (FtF). Phase changes in a round trip of the travel light inside the FP cavities with the cavity length Lc = 6um; (c) FtB cavity; (b) FtF cavity.

Metrics