Abstract

The sensitivity of grating-coupled Surface Plasmon Polaritons (SPPs) on metallic surface has been exploited to investigate the correlation between ripples formation under ultrashort laser exposure and SPPs generation conditions. Systematic examination of coupling of single ultrashort laser pulse on gratings with appropriate periods ranging from 440 nm to 800 nm has been performed. Our approach reveals that a surface plasmon is excited only for an appropriate grating period, the nickel sample exhibits fine ripples pattern, evidencing the plasmonic nature of ripples generation. We propose a systematic investigation supported by a comprehensive study on the obtained modulation of such a coupling efficiency by means of a phenomenological Drude-Lorentz model which captures possible optical properties modification under femtosecond irradiation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  2. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [CrossRef]
  3. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [CrossRef]
  4. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  5. A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
    [CrossRef]
  6. A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [CrossRef]
  7. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
    [CrossRef]
  8. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [CrossRef]
  9. G. Miyaji, and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [CrossRef] [PubMed]
  10. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  11. J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
    [CrossRef]
  12. J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  13. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
    [CrossRef]
  14. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  15. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” in Springer Tracts in Modern Physics, (Springer, 1988), Vol. 111.
  16. A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
    [CrossRef]
  17. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
    [CrossRef]
  18. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
    [CrossRef]
  19. Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010).
    [CrossRef]
  20. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [CrossRef] [PubMed]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  22. D. E. Gray, American Institute of Physics Handbook, 3rd. ed. (McGraw Hill, 1972).
  23. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  25. J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059.
    [CrossRef]
  26. Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
    [CrossRef]
  27. P. E. Hopkins, J. M. Klopf, and P. M. Norris, “Influence of interband transitions on electron-phonon coupling measurements in Ni films,” Appl. Opt. 46(11), 2076–2083 (2007).
    [CrossRef] [PubMed]

2010

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010).
[CrossRef]

2009

J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

2008

G. Miyaji, and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[CrossRef]

Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

2007

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

P. E. Hopkins, J. M. Klopf, and P. M. Norris, “Influence of interband transitions on electron-phonon coupling measurements in Ni films,” Appl. Opt. 46(11), 2076–2083 (2007).
[CrossRef] [PubMed]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
[CrossRef] [PubMed]

2006

J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[CrossRef]

2003

A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

2002

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

1998

1986

A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[CrossRef]

1983

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

1982

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[CrossRef] [PubMed]

1973

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

1965

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059.
[CrossRef]

Borowiec, A.

A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Crawford, T. H. R.

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Fauchet, P. M.

A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[CrossRef]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Guo, C.

A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[CrossRef]

J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[CrossRef]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Han, Y.

Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010).
[CrossRef]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Haugen, H. K.

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Hopkins, P. E.

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Hsu, E. M.

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Klopf, J. M.

Krger, J.

J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Kruger, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059.
[CrossRef]

Lin, Z.

Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Liu, J. M.

Majewski, M. L.

Malzer, S.

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Miyaji, G.

Miyazaki, K.

Norris, P. M.

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Qu, S.

Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010).
[CrossRef]

Rakic, A. D.

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059.
[CrossRef]

Siegman, A. E.

A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[CrossRef]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Tiedje, H. F.

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[CrossRef]

Wang, J.

J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[CrossRef]

Wang, L. J.

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Xue, L.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

Yang, J.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

Yang, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zhao, Q. Z.

Zhigilei, L. V.

Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

ACS Nano

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[CrossRef]

A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007).
[CrossRef]

Appl. Surf. Sci.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059.
[CrossRef]

Chem. Phys. Lett.

Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010).
[CrossRef]

IEEE J. Quantum Electron.

A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[CrossRef]

J. Appl. Phys.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Other

D. E. Gray, American Institute of Physics Handbook, 3rd. ed. (McGraw Hill, 1972).

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” in Springer Tracts in Modern Physics, (Springer, 1988), Vol. 111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) All corrugation gratings of different periods on nickel plates, under natural light illumination. (b) SEM image of the ΛG = 560 nm grating.

Fig. 2
Fig. 2

Λ and σ are the grating period and the grating thickness, respectively. The gratings are illuminated under normal incidence. (a) TE polarization : the electric field is parallel to the grooves. (b) TM polarization : the electric field is perpendicular to the grooves.

Fig. 3
Fig. 3

SEM images of samples with grating of 710 nm (a), 790 nm (b) and 760 nm (c,d) irradiated with a single pulse TM polarized femtosecond laser beam, at a fluence of 1.42 J/cm2.

Fig. 4
Fig. 4

Role of the TM polarization in well-defined ripples on the irradiated area of the nickel substrate: density of ripples as a function of the period of the grating, with a TM polarization (a,c) and a TE polarization (b,d) and a laser fluence of 1.42 J/cm2 (a,b) and 0.97 J/cm2 (c,d). The density of ripples is measured as the ratio between the surface covered with fine ripples and the overall surface of the spot.

Fig. 5
Fig. 5

Calculated plasmon wavelength in the complex permittivity plane (a). Isowavelength corresponding to λSP = 750 nm is represented by solid green curve and λSP = 760 nm by dashed blue curve. The expected cold value (792 nm) is pointed in black. The set of solutions is plotted as a function of the plasma frequencies used in the Drude-Lorentz model (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ L I P S S = λ η ± sin θ ,
1 Λ L I P P S = sin θ λ ± N Λ G .
λ S P = 2 π k S P = λ [ ( ɛ d + ɛ ˜ m ɛ d ɛ ˜ m ) 1 / 2 ] .
ɛ ˜ m = ɛ r + i ɛ i = ɛ ˜ D + ɛ ˜ I B = [ 1 f 0 ω p 2 ω ( ω i γ ) ] D + [ j = 1 k f j Ω p 2 ( ω j 2 ω 2 ) + i ω Γ j ] I B .

Metrics