Abstract

Cavity optomechanical systems offer one of the most sensitive methods for detecting mechanical motion using shifts in the optical resonance frequency of the optomechanical resonator. Presently, these systems are used for measuring mechanical thermal noise displacement or mechanical motion actuated by optical forces. Electrostatic capacitive actuation and detection have been shown previously for silicon micro electro mechanical resonators for application in filters and oscillators. Here, we demonstrate monolithic integration of electrostatic capacitive actuation with optical sensing using silicon optomechanical disk resonators and waveguides. The electrically excited mechanical motion is observed as an optical intensity modulation when the input electrical signal is at a frequency of 235MHz corresponding to the radial vibrational mode of the silicon microdisk.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
    [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [CrossRef] [PubMed]
  3. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [CrossRef] [PubMed]
  4. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
    [CrossRef]
  5. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  6. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
    [CrossRef] [PubMed]
  7. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  8. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
    [CrossRef] [PubMed]
  9. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
    [CrossRef] [PubMed]
  10. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [CrossRef] [PubMed]
  11. J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
    [CrossRef]
  12. J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
    [CrossRef]
  13. S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
    [CrossRef]
  14. D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009).
    [CrossRef]
  15. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010).
    [CrossRef] [PubMed]
  16. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
    [CrossRef]
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
    [CrossRef]
  18. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
    [CrossRef] [PubMed]
  19. O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
    [CrossRef]
  20. S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” in 19th IEEE International Conference on Micro Electro Mechanical Systems (2006), pp. 866–869.
  21. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  22. S. Pourkamali and F. Ayazi, “SOI-based HF and VHF single-crystal silicon resonators with sub-100 nanometer vertical capacitive gaps,” in 12th International Conference on Solid-State Sensors, Actuators and Microsystems (2003), Vol. 1, pp. 837–840.
  23. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
    [CrossRef] [PubMed]
  24. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  25. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [CrossRef]
  26. V. S. Ilchenko, J. Byrd, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Miniature oscillators based on optical whispering gallery mode resonators,” in IEEE International Frequency Control Symposiumm (2008), pp. 305–308.
  27. K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
    [CrossRef]
  28. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
    [CrossRef]

2010 (4)

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010).
[CrossRef] [PubMed]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

2009 (6)

D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[CrossRef] [PubMed]

2008 (4)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[CrossRef]

2007 (3)

2006 (2)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
[CrossRef] [PubMed]

2005 (2)

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
[CrossRef]

J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

Abdelmoneum, M. A.

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

Adibi, A.

Alegre, T. P. M.

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010).
[CrossRef] [PubMed]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Arcizet, O.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Aspelmeyer, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Ayazi, F.

S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Bäuerle, D.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Bhave, S. A.

D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009).
[CrossRef]

Blaser, F.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Böhm, H. R.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Bowen, W. P.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

Briant, T.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[CrossRef] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[CrossRef] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Clark, J. R.

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

Cohadon, P.-F.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Français, O.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Gigan, S.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Hao, Z.

S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
[CrossRef]

Harris, G. I.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Heidmann, A.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Hertzberg, J. B.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[CrossRef]

Hsu, W.-T.

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[CrossRef] [PubMed]

Knittel, J.

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Langer, G.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Lee, K. H.

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

Lee, M. C. M.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Mackowski, J.-M.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Martinez, L.

McRae, T. G.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

Meenehan, S.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Michel, C.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Molinelli, C.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Nguyen, C. T.-C.

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
[CrossRef]

Painter, O.

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010).
[CrossRef] [PubMed]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Paternostro, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010).
[CrossRef] [PubMed]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Pinard, L.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Pourkamali, S.

S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
[CrossRef]

Ren, Z.

J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
[CrossRef]

Rivière, R.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Rokhsari, H.

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Rousseau, L.

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Schliesser, A.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Schwab, K. C.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Soltani, M.

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[CrossRef] [PubMed]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
[CrossRef]

Weinstein, D.

D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009).
[CrossRef]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Wu, M. C.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Yao, J.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

Yegnanarayanan, S.

Zeilinger, A.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

J. Microelectromech. Syst. (3)

J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005).
[CrossRef]

S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004).
[CrossRef]

D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009).
[CrossRef]

N. J. Phys. (1)

O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008).
[CrossRef]

Nat. Photonics (1)

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Nat. Phys. (1)

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Nature (5)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (2)

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010).
[CrossRef] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[CrossRef] [PubMed]

Other (3)

S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” in 19th IEEE International Conference on Micro Electro Mechanical Systems (2006), pp. 866–869.

S. Pourkamali and F. Ayazi, “SOI-based HF and VHF single-crystal silicon resonators with sub-100 nanometer vertical capacitive gaps,” in 12th International Conference on Solid-State Sensors, Actuators and Microsystems (2003), Vol. 1, pp. 837–840.

V. S. Ilchenko, J. Byrd, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Miniature oscillators based on optical whispering gallery mode resonators,” in IEEE International Frequency Control Symposiumm (2008), pp. 305–308.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the electrically actuated disk mechanical resonator in blue (on left) coupled to an optomechanical resonator in grey (on right). A combination of DC and RF potential applied to electrodes around the mechanical resonator excite vibrations which get coupled to the optomechanical disk resonator .These radial vibrations affect the optical resonance thereby modulating the intensity of light exiting the waveguide.

Fig. 2
Fig. 2

Scanning electron microscope image of fabricated device showing the coupled disk resonator geometry. The darker silicon shade show the silicon regions where boron has been ion implanted while the lighter silicon regions are undoped silicon.

Fig. 3
Fig. 3

a, Setup for measuring the optical response of electrically actuated optomechanical resonators. b, Optical transmission spectrum showing the disk resonance at 1550.541nm with a quality factor of 26,140. The red line shows the wavelength of the tunable laser for the modulator measurements. c, Electrical transmission spectrum observed using the network analyzer showing modulation peaks at 235.1 MHz (A) and 242.1MHz (B) when input RF power is at −10dBm and optical input power is at 6dBm. Inset A and B show the displacement mode shape obtained using finite element method for modes predicted to be at 241.6MHz and 248.3MHz respectively.

Fig. 4
Fig. 4

Transmission spectrum showing modulation at multiple in-plane mechanical resonances for an optical input of 6dBm and a RF input of 0dBm. Insets 1 to 10 show the mechanical mode shape obtained using finite element method and their predicted and measured frequency for modes in the transmission spectrum.

Fig. 5
Fig. 5

Variation of the amplitude of optical power modulation and extinction ratio with RF power (left) and DC bias voltage (right) for an optical input power of 6dBm(left) and −6dBm(right).

Metrics