Abstract

Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
    [Crossref]
  2. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [Crossref] [PubMed]
  3. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
    [Crossref]
  4. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  5. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
    [Crossref] [PubMed]
  6. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
    [Crossref] [PubMed]
  7. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  8. J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  9. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  10. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  11. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
    [Crossref]
  12. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
    [Crossref]
  13. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [Crossref]
  14. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  15. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
    [Crossref]
  16. A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57(4), R2006–R2008 (1998).
    [Crossref]
  17. J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13(20), 8083–8088 (2005).
    [Crossref] [PubMed]
  18. V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
    [Crossref] [PubMed]
  19. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
    [Crossref]
  20. G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
    [Crossref] [PubMed]
  21. S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
    [Crossref] [PubMed]
  22. O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
    [Crossref] [PubMed]
  23. A. F. Wells, Three-Dimensional Nets and Polyhedra / A. F. Wells (Wiley, 1977).
  24. J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
    [Crossref] [PubMed]
  25. M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
    [Crossref]
  26. A. H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections (NASA, 1970).
  27. Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, and E. L. Thomas, “Block copolymers as photonic bandgap materials,” J. Lightwave Technol. 17(11), 1963–1969 (1999).
    [Crossref]
  28. A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
    [Crossref]
  29. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
    [Crossref] [PubMed]
  30. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [Crossref]
  31. M. Martinez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11(15), 1740–1745 (2003).
    [Crossref] [PubMed]
  32. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
    [Crossref] [PubMed]
  33. S. T. Hyde and G. E. Schröder-Turk, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms,” Curr. Opin. Colloid Interface Sci. 8(1), 5–14 (2003).
    [Crossref]
  34. S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
    [Crossref]
  35. S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
    [Crossref]
  36. C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
    [Crossref] [PubMed]

2011 (2)

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

2010 (5)

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

2009 (6)

J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
[Crossref]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

2008 (2)

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[Crossref]

S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
[Crossref] [PubMed]

2007 (2)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

2006 (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

2005 (3)

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[Crossref]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[Crossref] [PubMed]

J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13(20), 8083–8088 (2005).
[Crossref] [PubMed]

2004 (2)

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

2003 (7)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

S. T. Hyde and G. E. Schröder-Turk, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms,” Curr. Opin. Colloid Interface Sci. 8(1), 5–14 (2003).
[Crossref]

M. Martinez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express 11(15), 1740–1745 (2003).
[Crossref] [PubMed]

M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
[Crossref]

O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
[Crossref] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2002 (2)

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref]

1999 (1)

1998 (1)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57(4), R2006–R2008 (1998).
[Crossref]

Averdunk, H.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Bartal, G.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Bawendi, M. G.

Bonneau, C.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

Brink, F.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Busch, K.

Caballero, M. T.

Cantín, A.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Carter, W. C.

M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
[Crossref]

Chan, C.

Chutinan, A.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57(4), R2006–R2008 (1998).
[Crossref]

Corma, A.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

de Campo, L.

S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
[Crossref]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Delgado Friedrichs, O.

O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
[Crossref] [PubMed]

Delgado-Friedrichs, O.

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

DeRege, P.

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Di Matteo, T.

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

Díaz-Cabañas, M. J.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Dufresne, E. R.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Essig, S.

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Fink, Y.

Fitz Gerald, J. D.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Furusawa, A.

J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Grosse-Brauckmann, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Gu, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hyde, S.

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

Hyde, S. T.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
[Crossref]

S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
[Crossref] [PubMed]

S. T. Hyde and G. E. Schröder-Turk, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms,” Curr. Opin. Colloid Interface Sci. 8(1), 5–14 (2003).
[Crossref]

Ibáñez-López, C.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Kawazoe, T.

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Kobayashi, K.

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[Crossref]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Large, M. C. J.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Lee, J.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[Crossref] [PubMed]

Li, M.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Liu, M.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Liu, Y.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Longdell, J.

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

Maldovan, M.

M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
[Crossref]

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

Martinez-Corral, M.

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Mecke, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Michielsen, K.

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Mochrie, S. G. J.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Moliner, M.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Narayanan, S.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Neshev, D. N.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Noda, S.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57(4), R2006–R2008 (1998).
[Crossref]

Noh, H.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

O’Keeffe, M.

S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
[Crossref] [PubMed]

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
[Crossref] [PubMed]

O'Brien, J. L.

J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Oguey, C.

S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
[Crossref]

Ohtsu, M.

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[Crossref]

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Osuji, C. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Poladian, L.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Proserpio, D. M.

S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
[Crossref] [PubMed]

Prum, R. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Ramsden, S.

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

Rill, M. S.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

Saavedra, G.

Saba, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Sandy, A.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Saranathan, V.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Schröder-Turk, G. E.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

S. T. Hyde and G. E. Schröder-Turk, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms,” Curr. Opin. Colloid Interface Sci. 8(1), 5–14 (2003).
[Crossref]

Sihvola, A.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Staude, I.

Stavenga, D. G.

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[Crossref]

Straub, M.

Sun, J.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Szema, R.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[Crossref] [PubMed]

Thiel, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Thomas, E.

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

Thomas, E. L.

M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
[Crossref]

Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, and E. L. Thomas, “Block copolymers as photonic bandgap materials,” J. Lightwave Technol. 17(11), 1963–1969 (1999).
[Crossref]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Turner, M. D.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Urbas, A.

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

Urbas, A. M.

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

von Freymann, G.

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Vuckovic, J.

J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Wegener, M.

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

Wickham, S.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Wolff, C.

Yaghi, O. M.

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Zhang, D.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Zhang, X.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Zhao, R.

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Zou, X.

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Acta Crystallogr. A (2)

O. Delgado Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: semiregular nets,” Acta Crystallogr. A 59(6), 515–525 (2003).
[Crossref] [PubMed]

C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, “Three-periodic nets and tilings: minimal nets,” Acta Crystallogr. A 60(6), 517–520 (2004).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (3)

A. Urbas, M. Maldovan, P. DeRege, and E. Thomas, “Bicontinuous cubic block copolymer photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 14(24), 1850–1853 (2002).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007).
[Crossref]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. T. Hyde, M. O’Keeffe, and D. M. Proserpio, “A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics,” Angew. Chem. Int. Ed. Engl. 47(42), 7996–8000 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Maldovan, W. C. Carter, and E. L. Thomas, “Three-dimensional dielectric network structures with large photonic band gaps,” Appl. Phys. Lett. 83(25), 5172–5174 (2003).
[Crossref]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

S. T. Hyde and G. E. Schröder-Turk, “Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms,” Curr. Opin. Colloid Interface Sci. 8(1), 5–14 (2003).
[Crossref]

J. Electromagn. Waves Appl. (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. R. Soc. Interface (1)

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[Crossref]

J. Struct. Biol. (1)

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol. 174(2), 290–295 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Nature (2)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, and X. Zou, “The ITQ-37 mesoporous chiral zeolite,” Nature 458(7242), 1154–1157 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57(4), R2006–R2008 (1998).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[Crossref] [PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Soft Matter (1)

S. T. Hyde, L. de Campo, and C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’,” Soft Matter 5(14), 2782–2794 (2009).
[Crossref]

Solid State Sci. (1)

S. Hyde, S. Ramsden, T. Di Matteo, and J. Longdell, “Ab-initio construction of some crystalline 3D Euclidean networks,” Solid State Sci. 5(1), 35–45 (2003).
[Crossref]

Other (2)

A. H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections (NASA, 1970).

A. F. Wells, Three-Dimensional Nets and Polyhedra / A. F. Wells (Wiley, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chiral composites derived from biomimetic designs. (a) Photograph of Callophrys rubi. (b) SEM image of the chiral srs-network found within the Callophrys rubi. (c) The gyroid minimal surface and its two complementary left handed (LHD) & right-handed (RHD) chiral srs-networks. (d) LHD srs-network. (e) RHD srs-network. (f) Achiral composite consisting of RHD and LHD srs-networks. (g) Chiral composite consisting of two RHD srs-networks. (h) A multifunctional photonic device, designed from a combination of chiral composites.

Fig. 2
Fig. 2

Images and transmission spectra of the chiral srs-network. (a) The pyramid-like design of the chiral srs-network from the side view and (b) top view. (c) SEM image of the microstructure possessing a pyramid-like shape to enhance the mechanical strength; the scale bar is 10 μm. (d) A close up view of the same structure showing excellent replication of the srs-network topology. The scale bar is 1 μm and a blue arrow shows the direction of the RHD 4-screw axis. (e) Experimentally measured transmission spectra of RCP (blue) and LCP (red) light at normal incidence.

Fig. 3
Fig. 3

Views of the chiral gyroid srs-network along [111]. (a) SEM image of the chiral gyroid srs-network. (b) A close up view showing the asymmetry induced by the aspherical focusing conditions of the DLW method. The scale bars are 10 μm (a) and 1 um (b). (c) View of the underlying srs network model.

Fig. 4
Fig. 4

SEM images and transmission spectra of the photonic chiral composites consisting of two srs networks. (a) The achiral composite with blue and red arrows to illustrate the opposite chirality of the two srs-networks, the scale bar is 1 μm. (b) Experimentally measured transmission spectra of RCP (blue) and LCP (red) light through the achiral composite. (c) The chiral composite. Blue arrows illustrate the same chirality of the two srs-networks, the scale bar is 1 μm. (d) Experimentally measured transmission spectra of RCP (blue) and LCP (red) light through the chiral composite. (e) SEM image of a multifunctional chiral microstructure, consisting of LHD and RHD srs-networks partially overlapping to form three distinct regions, the scale bar is 20 μm.

Fig. 5
Fig. 5

Simulated transmission spectra for RCP (blue) and LCP (red) light along [100]. The unit cell size is 3 μm and the filling fraction of a single network was approximately 15%. (a) Chiral single RHD srs-network. (b) Achiral composite consisting of a RHD and a LHD srs-network. (c) Chiral composite consisting of 2 RHD srs-networks.

Fig. 6
Fig. 6

Simulated polarisation conversion spectra for RCP (blue) and LCP (red) light incidence along [100]. The unit cell size is 3 μm and the filling fraction of a single network was approximately 15%. (a) Chiral srs-network. (b) Achiral composite consisting of a RHD and a LHD srs-network. (c) Chiral composite consisting of 2 RHD srs-networks, with broken cubic symmetry causing significant polarisation conversion.

Metrics