Abstract

Simultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes associated β-cell dysfunction. Our experiments indicate that IOS imaging permits simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid IOS image sequences revealed transient optical responses that had time courses tightly correlated with the glucose stimulation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
    [CrossRef] [PubMed]
  2. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
    [CrossRef] [PubMed]
  3. D. Holmberg and U. Ahlgren, “Imaging the pancreas: from ex vivo to non-invasive technology,” Diabetologia 51(12), 2148–2154 (2008).
    [CrossRef] [PubMed]
  4. M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
    [CrossRef] [PubMed]
  5. M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
    [CrossRef] [PubMed]
  6. M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
    [CrossRef] [PubMed]
  7. M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
    [CrossRef] [PubMed]
  8. C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
    [CrossRef] [PubMed]
  9. A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
    [CrossRef] [PubMed]
  10. J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
    [CrossRef]
  11. S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
    [CrossRef] [PubMed]
  12. J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
    [CrossRef] [PubMed]
  13. H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
    [CrossRef] [PubMed]
  14. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
    [CrossRef] [PubMed]
  15. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
    [CrossRef] [PubMed]
  16. A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
    [CrossRef] [PubMed]
  17. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
    [CrossRef] [PubMed]
  18. Y. G. Li, Q. X. Zhang, L. Liu, F. R. Amthor, and X. C. Yao, “High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation,” Opt. Express 18(7), 7210–7218 (2010).
    [CrossRef] [PubMed]
  19. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008).
    [CrossRef] [PubMed]
  20. Y. C. Li, C. Strang, F. R. Amthor, L. Liu, Y. G. Li, Q. X. Zhang, K. Keyser, and X. C. Yao, “Parallel optical monitoring of visual signal propagation from the photoreceptors to the inner retina layers,” Opt. Lett. 35(11), 1810–1812 (2010).
    [CrossRef] [PubMed]
  21. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
    [CrossRef] [PubMed]
  22. C. X. Chunming Li, C. Gui, and M. D. Fox, “Level Set Evolution without Re-initialization: A New Variational Formulation,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (San Diego, 2005), pp. 430–436.
  23. M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
    [CrossRef] [PubMed]
  24. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47(22), 4164–4176 (2008).
    [CrossRef] [PubMed]
  25. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
    [CrossRef] [PubMed]
  26. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
    [CrossRef] [PubMed]
  27. T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
    [CrossRef] [PubMed]
  28. B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
    [CrossRef] [PubMed]

2010 (3)

2009 (6)

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
[CrossRef] [PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[CrossRef] [PubMed]

B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
[CrossRef] [PubMed]

W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

2008 (4)

D. Holmberg and U. Ahlgren, “Imaging the pancreas: from ex vivo to non-invasive technology,” Diabetologia 51(12), 2148–2154 (2008).
[CrossRef] [PubMed]

X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008).
[CrossRef] [PubMed]

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47(22), 4164–4176 (2008).
[CrossRef] [PubMed]

2007 (2)

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
[CrossRef] [PubMed]

2006 (3)

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

2005 (2)

X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
[CrossRef] [PubMed]

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

2000 (1)

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

1988 (1)

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

1984 (1)

M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
[CrossRef] [PubMed]

1978 (1)

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

1968 (2)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Ahlgren, U.

D. Holmberg and U. Ahlgren, “Imaging the pancreas: from ex vivo to non-invasive technology,” Diabetologia 51(12), 2148–2154 (2008).
[CrossRef] [PubMed]

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Akkin, T.

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[CrossRef] [PubMed]

Amthor, F. R.

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Antunes, C. M.

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

Bading, H.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Bengtson, C. P.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Berggren, P. O.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Boppart, S. A.

Brissova, M.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Brown, J. E.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Cabrera, O.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Caicedo, A.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Chen, Y.

Chu, A.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Cook, D. L.

M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
[CrossRef] [PubMed]

Drexler, W.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Duker, J. S.

Eder, A.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Foust, A. J.

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

Fowler, M. J.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Friedrich, M.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fujimoto, W. Y.

M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
[CrossRef] [PubMed]

George, J. S.

Ghosh, S.

A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
[CrossRef] [PubMed]

Goulley, J.

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Graf, B. W.

Granada, B.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Grapin-Botton, A.

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Green, A.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Gyulkhandanyan, A. V.

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

Harary, H. H.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Harlan, D. M.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Head, W. S.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Hellwig, A.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Hirshberg, B.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Hofmann, K. P.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

Holmberg, D.

D. Holmberg and U. Ahlgren, “Imaging the pancreas: from ex vivo to non-invasive technology,” Diabetologia 51(12), 2148–2154 (2008).
[CrossRef] [PubMed]

Ikeuchi, M.

M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
[CrossRef] [PubMed]

Ishihara, M.

Kahlert, M.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

Kawauchi, S.

Keynes, R. D.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Keyser, K.

Kikuchi, M.

King, H.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Ko, H. J.

Köhler, M.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Koster, J. C.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Krause, A.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

Landowne, D.

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[CrossRef] [PubMed]

Lasser, T.

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Leibiger, B.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Leibiger, I. B.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Leitgeb, R. A.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Li, Y. C.

Li, Y. G.

Liu, L.

Louchami, K.

W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
[CrossRef] [PubMed]

Malaisse, W. J.

W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
[CrossRef] [PubMed]

Manning Fox, J. E.

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

Martin-Williams, E. J.

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

Meda, P.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Moede, T.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Molano, R. D.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Nawashiro, H.

Nichols, C. G.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Nicholson, W. E.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Nittala, A.

A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
[CrossRef] [PubMed]

Nyqvist, D.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Ooigawa, H.

Pepperberg, D. R.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

Perry, B.

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Pileggi, A.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Pinto, L. H.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Piston, D. W.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Povazay, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Powers, A. C.

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Queisser, G.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Ralston, T. S.

Rector, D. M.

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Remedi, M. S.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Ricordi, C.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Rocheleau, J. V.

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Roglic, G.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Rosário, L. M.

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

Salgado, A. P.

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Santos, R. M.

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

Satin, L. S.

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

Sato, S.

Sattmann, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Sener, A.

W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
[CrossRef] [PubMed]

Sicree, R.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Sivaprakasam, A.

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[CrossRef] [PubMed]

Speier, S.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

Strang, C.

Tasaki, I.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Unterhuber, A.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Villiger, M.

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Wang, X. J.

A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Wheeler, M. B.

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

Wiegert, J. S.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Wilbertz, J.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Wild, S.

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Wittmann, M.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Wittum, G.

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Yamauchi, A.

Yao, X. C.

Yu, J.

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Zhang, Q. X.

Zhao, Y. B.

Appl. Opt. (2)

Curr. Pharm. Des. (1)

M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Des. 16(14), 1595–1608 (2010).
[CrossRef] [PubMed]

Diabetes (1)

C. M. Antunes, A. P. Salgado, L. M. Rosário, and R. M. Santos, “Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets,” Diabetes 49(12), 2028–2038 (2000).
[CrossRef] [PubMed]

Diabetes Care (1)

S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).
[CrossRef] [PubMed]

Diabetologia (2)

D. Holmberg and U. Ahlgren, “Imaging the pancreas: from ex vivo to non-invasive technology,” Diabetologia 51(12), 2148–2154 (2008).
[CrossRef] [PubMed]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52(8), 1599–1607 (2009).
[CrossRef] [PubMed]

Endocrinology (1)

J. E. Manning Fox, A. V. Gyulkhandanyan, L. S. Satin, and M. B. Wheeler, “Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat,” Endocrinology 147(10), 4655–4663 (2006).
[CrossRef] [PubMed]

Horm. Metab. Res. (1)

M. Ikeuchi, W. Y. Fujimoto, and D. L. Cook, “Rat islet cells have glucose-dependent periodic electrical activity,” Horm. Metab. Res. 16(3), 125–127 (1984).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy,” J. Histochem. Cytochem. 53(9), 1087–1097 (2005).
[CrossRef] [PubMed]

J. Membr. Biol. (1)

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[CrossRef] [PubMed]

J. Neurosci. (1)

M. Wittmann, G. Queisser, A. Eder, J. S. Wiegert, C. P. Bengtson, A. Hellwig, G. Wittum, and H. Bading, “Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling,” J. Neurosci. 29(47), 14687–14700 (2009).
[CrossRef] [PubMed]

Nat. Med. (1)

S. Speier, D. Nyqvist, O. Cabrera, J. Yu, R. D. Molano, A. Pileggi, T. Moede, M. Köhler, J. Wilbertz, B. Leibiger, C. Ricordi, I. B. Leibiger, A. Caicedo, and P. O. Berggren, “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nat. Med. 14(5), 574–578 (2008).
[CrossRef] [PubMed]

Nat. Rev. Endocrinol (1)

W. J. Malaisse, K. Louchami, and A. Sener, “Noninvasive imaging of pancreatic beta cells,” Nat. Rev. Endocrinol 5(7), 394–400 (2009).
[CrossRef] [PubMed]

Nature (1)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Neuroscience (1)

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

PLoS Biol. (1)

J. V. Rocheleau, M. S. Remedi, B. Granada, W. S. Head, J. C. Koster, C. G. Nichols, and D. W. Piston, “Critical role of gap junction coupled K-ATP channel activity for regulated insulin secretion,” PLoS Biol. 4(2), 221–227 (2006).
[CrossRef]

Plos. One (1)

A. Nittala, S. Ghosh, and X. J. Wang, “Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New beta-Cell Cluster Model,” Plos. One 2, (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 85(15), 5531–5535 (1988).
[CrossRef] [PubMed]

Science (1)

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Other (1)

C. X. Chunming Li, C. Gui, and M. D. Fox, “Level Set Evolution without Re-initialization: A New Variational Formulation,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (San Diego, 2005), pp. 430–436.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for the IOS imaging of INS-1 cells. During the measurement, the cells were continuously illuminated by NIR light for recording of stimulus-evoked IOSs. The glucose stimulus was injected directly into the solution surrounding the INS-1 cells. A 40x water dipping objective was employed to minimize potential fluid vibration caused by glucose injection so that the effect of glucose delivery-associated water fluctuation on IOS imaging was negligible.

Fig. 2
Fig. 2

(A) Representative CMOS images of the INS-1 cells before differential processing. (B) IOS image sequence. The raw CMOS images were recorded with a speed of 10 frame/s. Each illustrated frame is an average over a 15-s interval (150 frames). (C) Enlarged image of the seventh frame in Fig. 2B. (D) Three dimensional (3D) presentation of the positive (increasing) IOSs in Fig. 2C. Black and white arrows point to pixels with positive IOSs around cells and inside cells respectively. (E) 3D presentation of the negative (decreasing) IOSs in Fig. 2C. Red arrows point to pixels with negative IOSs. (F) Representative localized IOSs of individual pixels. Each pixel corresponds to a 0.3 µm x 0.3 µm area. The vertical black line marks the stimulus onset. Traces 1 and 2 represent are from pixels at the black arrowheads in Fig. 2D (Positive IOSs around cells). Traces 3 and 4 are from the pixels at the white arrowheads in Fig. 2D (Positive IOSs inside cells). Traces 5 and 6 are from the red arrowheads in Fig. 2E (Negative IOSs). (G) Statistic calculation of the overall IOS changes over all cells. The vertical black line marks the stimulus onset. Inset: Enlarged image of the first 50-s of the IOS curves in Fig. 2G. Dotted lines mark the onset of phase 1 and phase 2.

Fig. 3
Fig. 3

(A) Representative CMOS image of the INS-1 cells before differential processing. The white line indicates the x-axis location from where the spatiotemporal image sequences in Fig. 3B and 3E were produced. The numbers indicate the cells that were used to produce the five temporal change curves in Fig. 4B. (B) Spatiotemporal sequence of the raw images produced from the white line area in Fig. 3A. The vertical black line marks the stimulus onset. The dashed line area was enlarged to produce Fig. 3C. (C) Enlarged image of the dashed line area in Fig. 3B. The vertical black line marks the stimulus onset. (D) IOS image of Fig. 3A. (E) Spatiotemporal sequence of IOS images produced from the white line area in Fig. 3A. The vertical black line marks the stimulus onset. The dashed line area was enlarged to produce Fig. 3F. (F) Enlarged image of the dashed line area in Fig. 3E. The vertical black line marks the stimulus onset.

Fig. 4
Fig. 4

(A) Enlarged image of cell 4 in Fig. 3A. The enclosed red line around the cell represents the boundary calculated by the variational level set formulation method. (B) Area change curves. Curve 1~5 correspond to area changes of cell 1~5 in Fig. 3A. The vertical black line marks the stimulus onset. (C) Comparison of area changes and IOS changes. The area change curve is the average of the 5 curves in Fig. 4B. It is vertically inverted in this figure to make illustration simpler. The IOS curves represent the positive and the negative IOS changes of the whole image sequence over all cells. The dotted lines indicate T1 (Length of IOS phase 1) and T2 (Time before significant cell shape change). (D) Comparison of T1 and T2 from 6 different experimental trials.

Metrics