Abstract

We investigate a novel approach to obtain highly nonlinear fibers with a tailored group velocity dispersion around a desired wavelength region of interest. Rather than exploiting longitudinal holes to control the average refractive index of the cladding and hence the fiber’s waveguide dispersion, as in holey fibers, we propose using an all-solid cladding with a suitably chosen refractive index difference relative to the core. We demonstrate numerically that this solution allows a large freedom in the manipulation of the overall fiber dispersive properties, while enabling, in practice, a much more accurate control of the fiber’s structural properties during fabrication. Effectively single mode guidance over a broad wavelength range can be achieved through the use of a second outer cladding forming a W-type index profile. We derive simple design rules for dispersion controlled fibers, based on which an algorithm for the automatic dispersion optimization is proposed, implemented and used to design various nonlinear fibers for all-optical processing and supercontinuum generation. Fabrication of a lead silicate fiber with flattened dispersion at telecoms wavelengths confirms the potential of these new fibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, San Diego, 2001).
  2. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [CrossRef] [PubMed]
  3. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
    [CrossRef]
  4. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  6. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [CrossRef] [PubMed]
  7. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
    [CrossRef]
  8. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005).
    [CrossRef]
  9. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  10. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
    [CrossRef]
  11. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
    [CrossRef] [PubMed]
  12. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
    [PubMed]
  13. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
    [CrossRef] [PubMed]
  14. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [CrossRef] [PubMed]
  15. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
    [CrossRef] [PubMed]
  16. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all optical processing at telecoms wavelengths,” Opt Fiber Technol (invited and submitted, 2010).
  17. A. W. Snyder and X. H. Zheng, “Optical Fibers of Arbitrary Cross-Sections,” J. Opt. Soc. Am. A 3(5), 600–609 (1986).
    [CrossRef]
  18. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, London; New York, 1983).
  19. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001).
    [CrossRef] [PubMed]
  20. Schott Optical glass catalogue 2009, available from http://www.schott.com .
  21. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  22. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [CrossRef]
  23. S. H. Wemple, “Material dispersion in optical fibers,” Appl. Opt. 18(1), 31–35 (1979).
    [CrossRef] [PubMed]
  24. F. X. Gan, “Optical-Properties of Fluoride Glasses - a Review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [CrossRef]
  25. D. E. Zelmon, S. S. Bayya, J. S. Sanghera, and I. D. Aggarwal, “Dispersion of barium gallogermanate glass,” Appl. Opt. 41(7), 1366–1367 (2002).
    [CrossRef] [PubMed]
  26. T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
    [CrossRef]
  27. G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
    [CrossRef]
  28. T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
    [CrossRef]
  29. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of Arsenic Trisulfide,” J. Opt. Soc. Am. 48(9), 633–636 (1958).
    [CrossRef]
  30. A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
    [CrossRef]
  31. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1km−1,” Optical Fiber Communications Conference (OFC) 2004, PDP26.
  32. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16(2), 214–217 (1998).
    [CrossRef]
  33. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [CrossRef]
  34. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17(20), 18076–18082 (2009).
    [CrossRef] [PubMed]
  35. A. S. Markus, G. Nicolai, W. Lothar, and R. Philip St, “Optical Properties of Chalcogenide-Filled Silica-Air PCF,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), AThD3.
  36. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [CrossRef] [PubMed]
  37. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
    [CrossRef] [PubMed]
  38. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
    [CrossRef] [PubMed]
  39. A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
    [CrossRef] [PubMed]
  40. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
    [CrossRef]
  41. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
    [CrossRef]
  42. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
    [CrossRef]
  43. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
    [CrossRef]
  44. D. Gloge, “Dispersion in weakly guiding fibers,” Appl. Opt. 10(11), 2442–2445 (1971).
    [CrossRef] [PubMed]
  45. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]

2010 (3)

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (4)

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

2007 (2)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

2006 (4)

2005 (2)

2003 (3)

2002 (3)

2001 (1)

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

1998 (2)

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16(2), 214–217 (1998).
[CrossRef]

1997 (1)

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

1996 (1)

1995 (2)

F. X. Gan, “Optical-Properties of Fluoride Glasses - a Review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[CrossRef]

1986 (2)

1979 (1)

1971 (2)

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

1958 (1)

Aggarwal, I. D.

Andres, M.

Andres, P.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Asimakis, S.

Atkin, D. M.

Badding, J. V.

Ballato, J.

Bayya, S. S.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Broderick, N. G. R.

Camerlingo, A.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cole, B. J.

Da, N.

Daw, M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Ellison, M.

Feng, M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Feng, X.

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

Ferrando, A.

Finazzi, V.

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Foy, P.

Frampton, K. E.

Fujino, S.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Gan, F. X.

F. X. Gan, “Optical-Properties of Fluoride Glasses - a Review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Ghosh, G.

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[CrossRef]

Gloge, D.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Gordon, J. P.

Granzow, N.

Hansen, K.

Hasegawa, T.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[CrossRef] [PubMed]

Hawkins, T.

Hayes, J. R.

Healy, N.

Hewak, D.

Hiroishi, J.

Horak, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
[CrossRef] [PubMed]

Kanamori, T.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Kikuchi, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

King, T. A.

Knight, J. C.

Kobayashi, K.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Kokuoz, B.

Koshiba, M.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Loh, W.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Loh, W. H.

Malitson, I. H.

McMillen, C.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Miklos, P. E.

Miret, J.

Mito, T.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Monro, T. M.

Moore, R. C.

Mori, A.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Morinaga, K.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Mossadegh, R.

Nagashima, T.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Nguyen, V. Q.

Nishida, Y.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Ohishi, Y.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Oikawa, K.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Parmigiani, F.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

Peacock, A. C.

Peng, M.

Petropoulos, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

Petrovich, M. N.

Poletti, F.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
[CrossRef] [PubMed]

Ponzo, G. M.

Powers, D. R.

Price, J. H. V.

Rao, A. M.

Reeves, W. H.

Reppert, J.

Rice, R. R.

Richardson, D.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Richardson, D. J.

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
[CrossRef] [PubMed]

Roberts, P. J.

Rodney, W. S.

Russell, P. S.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Russell, P. S. J.

Saitoh, K.

Sakaguchi, S.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Sanghera, J. S.

Sasaoka, E.

Sazio, P. J. A.

Schaafsma, D.

Schmidt, M. A.

Sharma, S. R.

Shori, R.

Silvestre, E.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Snyder, A. W.

Sparks, J. R.

Stafsudd, O.

Stolen, R.

Stone, J. M.

Sugimoto, N.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

Sugizaki, R.

Tadakuma, M.

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

Takahashi, M.

Takebe, H.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Taniguchi, Y.

Todoroki, S.

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

Tse, M. L. V.

Tse, V.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Wemple, S. H.

Wondraczek, L.

Yagi, T.

Yamada, M.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

Zelmon, D. E.

Zheng, X. H.

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

Appl. Opt. (4)

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Electron. Lett. (2)

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998).
[CrossRef]

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (2)

T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997).
[CrossRef]

F. X. Gan, “Optical-Properties of Fluoride Glasses - a Review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Opt. Commun. (1)

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Opt. Express (12)

A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001).
[CrossRef] [PubMed]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
[CrossRef] [PubMed]

W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
[PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[CrossRef] [PubMed]

K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17(20), 18076–18082 (2009).
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (6)

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, San Diego, 2001).

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all optical processing at telecoms wavelengths,” Opt Fiber Technol (invited and submitted, 2010).

Schott Optical glass catalogue 2009, available from http://www.schott.com .

A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, London; New York, 1983).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1km−1,” Optical Fiber Communications Conference (OFC) 2004, PDP26.

A. S. Markus, G. Nicolai, W. Lothar, and R. Philip St, “Optical Properties of Chalcogenide-Filled Silica-Air PCF,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), AThD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Wavelength dependence of effective index (neff), waveguide dispersion (Dw) and total dispersion (D) for step index fibers with an SF57 glass in the core and: variable core diameter d with Δn = 0.28 (left column) and variable Δn with d = 1.7 μm (right column).

Fig. 6
Fig. 6

(a) Refractive index and modal profiles of the fabricated dispersion flattened fiber. The core, cladding and outer cladding glasses are all Schott lead silicates (SF57, LLF1 and SF6, respectively). d = 1.63 μm; d ocl = 7.4 μm; (b) calculated confinement loss of the two core guided modes as function of d ocl/d ratio at 1.55 μm; (c) SEM of the fabricated fiber; (d) simulated and measured group velocity dispersion.

Fig. 2
Fig. 2

Optimization steps in the automatic design of a dispersion flattened SIF. The material dispersion (-Dm) of the SF57 core is shown by the red dashed line. Optimization targets are Dt = 0 ps/nm/km and DSt = 0 ps/nm2/km at λt = 1.55 μm. Initial {d (0), Δn (0)} conditions are: (a) {4 μm, 0.25}; (b) {1.3 μm, 0.4}. Both optimizations reach the same optimum fiber with d = 1.78 μm and Δn = 0.26, and the optimum total dispersion is shown by the black line.

Fig. 3
Fig. 3

Calculated dispersion of the optimum fiber in Fig. 2, obtained by: approximate method of Eq. (3) (red); direct inclusion of the core material dispersion in Eq. (1) with a constant Δn (cyan); direct inclusion of the material dispersion of two real glasses as a core (SF57) and cladding (LLF1) media (blue).

Fig. 4
Fig. 4

Typical dispersion and transmission curves of a glass

Fig. 5
Fig. 5

Refractive index (left) and material dispersion (right) of some common optical glasses: 1. silica [1]; 2. ZBLAN [24]; 3. and 4. Schott lead silicates [20]; 5. barium gallogermanate [25]; 6. bismuth silicate [26]; 7. zinc tellurite [27]; 8. lead gallate [28]; arsenic trisulfide [29].

Fig. 7
Fig. 7

Example of dispersion flattened designs (DSt = 0 ps/nm2/km) at four different wavelengths: 1.05, 1.55, 2 and 2.5 μm. The core material is Schott SF57 and the optimum value of diameter and index contrast are indicated next to each curve.

Fig. 8
Fig. 8

Two examples of dispersion tailored fibers for supercontinuum generation. (a) tellurite fiber, d = 2.82 μm, nco = 1.994, ncl = 1.840 at λt = 2 μm. (b) silica fiber with a GLS core, d = 0.68 μm, nco = 2.395, ncl = 1.450 at λt = 1.05 μm

Tables (1)

Tables Icon

Table 1 ZMDW of various families of optical glasses

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ J 1 ' ( U ) U J 1 ( U ) + K 1 ' ( W ) W K 1 ( W ) ] [ J 1 ' ( U ) U J 1 ( U ) + ( n c l n c o ) 2 K 1 ' ( W ) W K 1 ( W ) ] = ( n e f f n c o ) 2 ( 1 W 2 + 1 U 2 ) 2
D ( λ ) = λ c d 2 n e f f ( λ ) d λ 2 .
D ( λ ) D w ( λ )   +   D m ( λ ) ,
D w ( M d,  λ , n c o , n c l ) = 1 M D w (d,  λ / M , n c o , n c l ) .
n 2 ( ω ) 1 = E d E o / ( E o 2 2 ω 2 ) E l 2 / 2 ω 2
λ 0 ( μ m ) = 1.63 ( E d / E o 3 E l 2 ) 1 / 4 .

Metrics