Abstract

Polarization independent sum frequency generation (SFG) is proposed in an electro-optic (EO) tunable periodically poled Lithium Niobate (PPLN). The PPLN consists of four sections. External electric field could be selectively applied to them to induce polarization rotation between the ordinary and extraordinary waves. If the domain structure is well designed, the signal wave with an arbitrary polarization state could realize efficient frequency up-conversion as long as a z-polarized pump wave is selected. The applications in single photon detection and optical communications are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
    [CrossRef] [PubMed]
  2. X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
    [CrossRef]
  3. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).
  4. M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B 23(5), 918 (2006).
    [CrossRef]
  5. S. Yu and W. Y. Gu, “Wavelength conversions in quasi-phase-matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
    [CrossRef]
  6. J. Wang, J. Q. Sun, and Q. Z. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbits/s based on sum-frequency generation,” Opt. Lett. 31(11), 1711–1713 (2006).
    [CrossRef] [PubMed]
  7. T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13(11), 1203–1205 (2001).
    [CrossRef]
  8. Y. L. Lee, B. A. Yu, T. J. Eom, W. Shin, C. Jung, Y. C. Noh, J. Lee, D. K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO(3) waveguide,” Opt. Express 14(7), 2776–2782 (2006).
    [CrossRef] [PubMed]
  9. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
    [CrossRef]
  10. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 12.
  11. Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
    [CrossRef]
  12. P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
    [CrossRef]
  13. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
    [CrossRef] [PubMed]
  14. L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
    [CrossRef]
  15. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
    [CrossRef]

2010 (1)

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

2009 (1)

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

2008 (1)

Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
[CrossRef]

2007 (1)

2006 (3)

2004 (3)

S. Yu and W. Y. Gu, “Wavelength conversions in quasi-phase-matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
[CrossRef] [PubMed]

2001 (1)

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13(11), 1203–1205 (2001).
[CrossRef]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

1999 (1)

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

1996 (1)

L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
[CrossRef]

Albota, M. A.

Chen, X. F.

Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
[CrossRef]

Chen, Y. H.

Chong, T. C.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

Eom, T. J.

Fejer, M. M.

Gisin, N.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Gu, W. Y.

S. Yu and W. Y. Gu, “Wavelength conversions in quasi-phase-matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

Gu, X. R.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Hou, W. X.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

Hu, P. F.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

Huang, C. Y.

Huang, K.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Huang, Y. C.

Ishizuki, H.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13(11), 1203–1205 (2001).
[CrossRef]

Jung, C.

Ko, D. K.

Kong, Y.

Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
[CrossRef]

Kurz, J. R.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

Langrock, C.

Lee, C. T.

L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
[CrossRef]

Lee, H. C.

L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
[CrossRef]

Lee, J.

Lee, Y. L.

Li, Y.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Lin, C. H.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

Noh, Y. C.

Oh, K.

Pan, H. F.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Pomarico, E.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Roussev, R. V.

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Shapiro, J. H.

Sheu, L. G.

L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
[CrossRef]

Shi, L. P.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

Shin, W.

Sohler, W.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Suhara, T.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13(11), 1203–1205 (2001).
[CrossRef]

Sun, J. Q.

Sun, Q. Z.

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

Wang, J.

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

Wong, F. N. C.

Wu, E.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

Xia, Y.

Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
[CrossRef]

Yu, B. A.

Yu, S.

S. Yu and W. Y. Gu, “Wavelength conversions in quasi-phase-matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Zeng, H. P.

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Appl. Phys. B (1)

Y. Kong, X. F. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu, and H. P. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Yu and W. Y. Gu, “Wavelength conversions in quasi-phase-matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett. 13(11), 1203–1205 (2001).
[CrossRef]

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

J. Opt. Soc. Am. B (1)

N. J. Phys. (1)

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” N. J. Phys. 11(11), 113042 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron. 31(4), 337–349 (1999).
[CrossRef]

Opt. Rev. (1)

L. G. Sheu, C. T. Lee, and H. C. Lee, “Nondestructive measurement of loss performance in channel waveguide devices with phase modulator,” Opt. Rev. 3(3), 192–196 (1996).
[CrossRef]

Other (1)

A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a four-section PPLN. External electric fields are applied along the y-axis at the second and the third sections, representing with EO1 and EO2 in the figure.

Fig. 2
Fig. 2

The light intensity at different positions inside the four-section PPLN when the signal wave is y-polarized (a) or z-polarized (b). Solid, dotted, dash-dotted and dashed curves represent y-polarized signal wave, z-polarized signal wave, y-polarized SFW and z-polarized SFW, respectively. The unit of the intensity is MW/cm2.

Fig. 3
Fig. 3

The light intensity versus the wavelength when the signal wave is y-polarized ((a) and (b) correspond to the signal wave and SFW respectively) or z-polarized ((c) and (d) correspond to the signal wave and SFW respectively). The unit of the intensity is MW/cm2.

Fig. 4
Fig. 4

The light intensity of SFW at arbitrary polarization states. The unit of the intensity is MW/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ d E s y d x = i ω s n s y c ε 23 ( s ) ( x ) E s z e i Δ k 2 x , d E s z d x = i ω s n s z c [ ε 23 ( s ) ( x ) E s y e i Δ k 2 x + d 33 ( x ) E p z E o z e i Δ k 1 x ] , d E p z d x = i ω p n p z c d 33 ( x ) E s z * E o z e i Δ k 1 x , d E o y d x = i ω o n o y c ε 23 ( o ) ( x ) E o z e i Δ k 3 x , d E o z d x = i ω o n o z c [ ε 23 ( o ) ( x ) E o y e i Δ k 3 x + d 33 ( x ) E s z E p z e i Δ k 1 x ] .
{ d A s y d x = i K 2 A s z e i Δ k 2 x , d A s z d x = i K 2 A s y e i Δ k 2 x i K 1 A p z A o z e i Δ k 1 x , d A p z d x = i K 1 A s z * A o z e i Δ k 1 x , d A o y d x = i K 3 A o z e i Δ k 3 x , d A o z d x = i K 3 A o y e i Δ k 3 x i K 1 * A s z A p z e i Δ k 1 x .

Metrics