Abstract

We present a novel device for the characterisation of static magnetic fields through monitoring wavelength shifts of femtosecond inscribed fibre Bragg grating and micromachined slot, coated with Terfenol-D. The device was sensitive to static magnetic fields and can be used as a vectoral sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ± 0.3mT in transmission and ± 0.7mT in reflection. The use of a femtosecond laser to both inscribe the FBGs and micromachine the slot in a single stage prior to coating the device significantly simplifies the fabrication.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Clark, Ferromagnetic Materials, (North Holland, 1986), Vol. 1.
  2. A. Yariv and H. V. Winsor, “Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers,” Opt. Lett. 5(3), 87–89 (1980).
    [CrossRef] [PubMed]
  3. J. P. Willson and R. E. Jones, “Magnetostrictive fiber-optic sensor system for detecting dc magnetic fields,” Opt. Lett. 8(6), 333–335 (1983).
    [CrossRef] [PubMed]
  4. R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
    [CrossRef]
  5. F. Bucholtz, C. A. Villarruel, C. K. Kirkendall, D. M. Dagenais, J. A. McVicker, A. R. Davis, S. S. Patrick, K. P. Koo, and A. Dandridge, “8 element array of 3-axis fiber optic magnetometers for undersea applications,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw and J. D. C. Jones, eds. (Spie - Int Soc Optical Engineering, Bellingham, 1994), pp. 36–39.
  6. L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
    [CrossRef]
  7. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [CrossRef] [PubMed]
  8. M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
    [CrossRef]
  9. M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
    [CrossRef]
  10. W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
    [CrossRef]
  11. P. D. Dinev, “A two-dimensional remote fibre-optic magnetic field and current sensor,” Meas. Sci. Technol. 7(9), 1233–1237 (1996).
    [CrossRef]
  12. U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
    [CrossRef]
  13. M. H. Yang, J. X. Dai, C. M. Zhou, and D. S. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [CrossRef] [PubMed]
  14. G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
    [CrossRef]
  15. M. V. Dubov, M. Amos, K. Igor, and B. Ian, “Point by point FBG inscription by a focused NIR femtosecond laser,” in Technical Digest (CD) (Optical Society of America, 2004), CMY6.
  16. T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
    [CrossRef] [PubMed]
  17. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [CrossRef]
  18. C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
    [CrossRef]
  19. A. Othonos, and K. Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing (Artech House Optoelectronics Library, 1999), p. 422.
  20. D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
    [CrossRef]

2010

2009

2008

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

2003

C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
[CrossRef]

2000

M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
[CrossRef]

1999

G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
[CrossRef]

M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
[CrossRef]

1996

P. D. Dinev, “A two-dimensional remote fibre-optic magnetic field and current sensor,” Meas. Sci. Technol. 7(9), 1233–1237 (1996).
[CrossRef]

L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
[CrossRef]

1994

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

1984

U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
[CrossRef]

1983

1980

Ambrosino, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Atrey, M. D.

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

Berghmans, F.

Brogardh, T.

U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
[CrossRef]

Bucholtz, F.

L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
[CrossRef]

Campopiano, S.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Changhai, S.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Cusano, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Cutolo, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Dai, J. X.

Davino, D.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Dinev, P. D.

P. D. Dinev, “A two-dimensional remote fibre-optic magnetic field and current sensor,” Meas. Sci. Technol. 7(9), 1233–1237 (1996).
[CrossRef]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Fabiny, L.

L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
[CrossRef]

Gasparics, A.

G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
[CrossRef]

Geernaert, T.

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Holm, U.

U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
[CrossRef]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

Jiang, D. S.

Jiang, S.

Jianping, C.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Jones, R. E.

Kalli, K.

Kim, M. H.

M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
[CrossRef]

Komodromos, M.

Koutsides, C.

Krieg, G.

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

Lai, C. C.

C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
[CrossRef]

Lee, K. S.

M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
[CrossRef]

Lee, W. Y.

C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
[CrossRef]

Lim, S. H.

M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
[CrossRef]

Marciante, J. R.

Matejec, V.

M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
[CrossRef]

Narayankhedkar, K. G.

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

Nasilowski, T.

Paulicka, I.

M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
[CrossRef]

Rajini-Kumar, R.

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

Sedlar, M.

M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
[CrossRef]

Shuying, C.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Sohlstrom, H.

U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
[CrossRef]

Suesser, M.

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

Sun, L.

Thienpont, H.

Urbanczyk, W.

Vértesy, G.

G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
[CrossRef]

Vértesy, Z.

G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
[CrossRef]

Visone, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Vohra, S. T.

L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
[CrossRef]

Wang, W. S.

C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
[CrossRef]

Willson, J. P.

Winsor, H. V.

Wojcik, J.

Xiaoyang, W.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Xin, W.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Yang, M. H.

Yariv, A.

Zhigang, D.

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Zhou, C. M.

Cryogenics

R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48(3-4), 142–147 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

C. C. Lai, W. Y. Lee, and W. S. Wang, “Gamma radiation effect on the fiber Fabry-Perot interference sensor,” IEEE Photon. Technol. Lett. 15(8), 1132–1134 (2003).
[CrossRef]

J. Lightwave Technol.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber classes,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[CrossRef]

J. Magn. Magn. Mater.

G. Vértesy, A. Gasparics, and Z. Vértesy, “Improving the sensitivity of Fluxset magnetometer by processing of the sensor core,” J. Magn. Magn. Mater. 196–197, 333–334 (1999).
[CrossRef]

M. H. Kim, K. S. Lee, and S. H. Lim, “Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach-Zehnder interferometry,” J. Magn. Magn. Mater. 191(1-2), 107–112 (1999).
[CrossRef]

J. Phys. E Sci. Instrum.

U. Holm, H. Sohlstrom, and T. Brogardh, “Measurement system for magneto-optic sensor materials,” J. Phys. E Sci. Instrum. 17(10), 885–889 (1984).
[CrossRef]

Meas. Sci. Technol.

P. D. Dinev, “A two-dimensional remote fibre-optic magnetic field and current sensor,” Meas. Sci. Technol. 7(9), 1233–1237 (1996).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

L. Fabiny, S. T. Vohra, and F. Bucholtz, “Multiplexed Low-Frequency Electric and Magnetic Field Fiber Optic Sensors,” Opt. Fiber Technol. 2(1), 106–113 (1996).
[CrossRef]

Opt. Lett.

Sens. Actuators A Phys.

M. Sedlar, V. Matejec, and I. Paulicka, “Optical fibre magnetic field sensors using ceramic magnetostrictive jackets,” Sens. Actuators A Phys. 84(3), 297–302 (2000).
[CrossRef]

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[CrossRef]

Sensors J. IEEE

W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field,” Sensors J. IEEE 8(7), 1173–1179 (2008).
[CrossRef]

Other

A. E. Clark, Ferromagnetic Materials, (North Holland, 1986), Vol. 1.

F. Bucholtz, C. A. Villarruel, C. K. Kirkendall, D. M. Dagenais, J. A. McVicker, A. R. Davis, S. S. Patrick, K. P. Koo, and A. Dandridge, “8 element array of 3-axis fiber optic magnetometers for undersea applications,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw and J. D. C. Jones, eds. (Spie - Int Soc Optical Engineering, Bellingham, 1994), pp. 36–39.

M. V. Dubov, M. Amos, K. Igor, and B. Ian, “Point by point FBG inscription by a focused NIR femtosecond laser,” in Technical Digest (CD) (Optical Society of America, 2004), CMY6.

A. Othonos, and K. Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing (Artech House Optoelectronics Library, 1999), p. 422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Schematic of the inscription technique, 1 indicates the position of the 50x objective lens, 2 the vision optics for alignment and 3 the stages used for motion, b) Schematic of the characterisation apparatus for transmission and reflection for one of the vectors’ characterisation (the mount being altered for the perpendicular vectors).

Fig. 2
Fig. 2

a) Schematic of the geometry of the magnetic optical fibre sensor device with smf28 with femtosecond inscribed FBG in the core and micromachined slot which is then back filled and coated with Terfenol-D, b) Microscope image of the slot in the Corning single mode fibre-28 prior to being filled and coated.

Fig. 3
Fig. 3

Polarisation variation in the reflective spectral response of the sensor (coating thickness 1µm, length of groove and Bragg grating 2cm).

Fig. 4
Fig. 4

The variation in the centroid wavelength and effective optical strength of the reflective spectra as a function of changing polarisation.

Fig. 5
Fig. 5

The spectral response in reflection of the polarisation states of the optical sensor as a function of magnetic field strength, (a) for polarisation state B, (b) for polarisation state C for increasing field strength (▲) and decreasing field strength (♦).

Fig. 6
Fig. 6

The spectral characteristics of the device in transmission of the polarisation states of the optical sensor (coating thickness 1µm, length of groove and Bragg grating 3cm) as a function of magnetic field strength, (a) for polarisation state A, (b) for polarisation state C for increasing field strength (▲) and decreasing field strength (♦).

Fig. 7
Fig. 7

The spectral response of the optical sensor as a function of temperature (a) the reflective spectra, (b) spectral sensitivity

Metrics