Abstract

We report the fabrication of a reconfigurable wide-band twenty-channel second-order dual filterbank, defined on a silicon-on-insulator (SOI) platform, with tunable channel spacing and 20 GHz single-channel bandwidth. We demonstrate the precise tuning of eleven (out of the twenty) channels, with a channel spacing of 124 GHz (~1 nm) and crosstalk between channels of about −45 dB. The effective thermo-optic tuning efficiency is about 27 μW/GHz/ring. A single channel of a twenty-channel counter-propagating filterbank is also demonstrated, showing that both propagating modes exhibit identical filter responses. Considerations about thermal crosstalk are also presented. These filterbanks are suitable for on-chip wavelength-division-multiplexing applications, and have the largest-to-date reported number of channels built on an SOI platform.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
    [CrossRef]
  2. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  3. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  4. F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Photonics in Switching (San Francisco, CA, 2007), pp. 67–68.
  5. M. A. Popović, T. Barwicz, M. S. Dahlem, F. W. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless-reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF4.
  6. M. H. Khan, H. Shen, Y. Xuan, S. J. Mao, and M. H. Qi, “Eight-Channel Microring Resonator Array with Accurately Controlled Channel Spacing,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuNN6.
  7. M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
    [CrossRef] [PubMed]
  8. H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. H. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express 18(17), 18067–18076 (2010).
    [CrossRef] [PubMed]
  9. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007).
    [CrossRef] [PubMed]
  10. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” presented at the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.
  11. F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  12. C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
    [CrossRef] [PubMed]
  13. C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
    [CrossRef]
  14. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Eleven-Channel Second-Order Silicon Microring-Resonator Filterbank with Tunable Channel Spacing,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMS5.
  15. M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
    [CrossRef]
  16. F. X. Kärtner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovic, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, “Photonic analog-to-digital conversion with electronic-photonic integrated circuits,” in Silicon Photonics III, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6898, 689806 (2008).
  17. J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
    [CrossRef]
  18. M. A. Popović, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CTuCC1.
  19. M. S. Dahlem, C. W. Holzwarth, H. I. Smith, E. P. Ippen, and M. A. Popović, “Dynamical Slow Light Cell based on Controlled Far-Field Interference of Microring Resonators,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC4.
  20. C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
    [CrossRef]
  21. M. A. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research, A. Sawchuk, ed., Vol. 91 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper ITuD4.
  22. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Z. Feng, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  23. P. Dong, W. Qian, H. Liang, R. Shafiiha, X. Wang, D. Z. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators,” Opt. Express 18(24), 24504–24509 (2010).
    [CrossRef] [PubMed]
  24. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

2010 (4)

2009 (1)

2008 (1)

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

2007 (3)

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

2000 (1)

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

1997 (1)

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Amatya, R.

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

Asghari, M.

Barwicz, T.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Chen, P.

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Cunningham, J. E.

Dahlem, M.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

Dong, P.

Esman, R. D.

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Fan, L.

Feng, D. Z.

Feng, N. N.

Frankel, M. Y.

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Geng, M. M.

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Helkey, R.

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

Holzwarth, C. W.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Ippen, E. P.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

Jia, L. X.

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Kang, J. U.

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Kärtner, F. X.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

Khan, M. H.

Khilo, A.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Krishnamoorthy, A. V.

Li, G.

Liang, H.

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Liu, Y. L.

McNab, S. J.

Ouyang, J.

Popovic, M. A.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

Qi, M.

Qi, M. H.

Qian, W.

Ram, R. J.

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

Rooks, M.

Seiferth, E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Sekaric, L.

Shafiiha, R.

Shen, H.

Smith, H. I.

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Twichell, J. C.

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Varghese, L. T.

Vlasov, Y.

Vlasov, Y. A.

Wang, T.

Wang, X.

Xia, F. N.

Xiao, S.

Xuan, Y.

Yang, L.

Zhang, L.

Zhao, L.

Zheng, X. Z.

Electron. Lett. (1)

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

C. W. Holzwarth, A. Khilo, M. Dahlem, M. A. Popovic, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Device architecture and precision nanofabrication of microring-resonator filter banks for integrated photonic systems,” J. Nanosci. Nanotechnol. 10(3), 2044–2052 (2010).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (2)

C. W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F. X. Kärtner, E. P. Ippen, R. J. Ram, and H. I. Smith, “Fabrication strategies for filter banks based on microring resonators,” J. Vac. Sci. Technol. B 26(6), 2164–2167 (2008).
[CrossRef]

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Opt. Express (7)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007).
[CrossRef] [PubMed]

F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Z. Feng, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. H. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express 18(17), 18067–18076 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, X. Wang, D. Z. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators,” Opt. Express 18(24), 24504–24509 (2010).
[CrossRef] [PubMed]

Other (11)

M. A. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research, A. Sawchuk, ed., Vol. 91 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper ITuD4.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

M. A. Popović, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CTuCC1.

M. S. Dahlem, C. W. Holzwarth, H. I. Smith, E. P. Ippen, and M. A. Popović, “Dynamical Slow Light Cell based on Controlled Far-Field Interference of Microring Resonators,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC4.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Eleven-Channel Second-Order Silicon Microring-Resonator Filterbank with Tunable Channel Spacing,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMS5.

F. X. Kärtner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovic, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, “Photonic analog-to-digital conversion with electronic-photonic integrated circuits,” in Silicon Photonics III, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6898, 689806 (2008).

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” presented at the European Conference on Optical Communication, Berlin, Germany, Sept. 2007, paper 1.2.3.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Photonics in Switching (San Francisco, CA, 2007), pp. 67–68.

M. A. Popović, T. Barwicz, M. S. Dahlem, F. W. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless-reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF4.

M. H. Khan, H. Shen, Y. Xuan, S. J. Mao, and M. H. Qi, “Eight-Channel Microring Resonator Array with Accurately Controlled Channel Spacing,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuNN6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of the operation of a general second-order filterbank, showing three adjacent channels tuned to different frequencies, routing the signal into the respective drop ports.

Fig. 2
Fig. 2

Layout of one channel of the second-order counter-propagating filterbank.

Fig. 3
Fig. 3

Relevant parameters for designing filterbanks: single-channel bandwidth, channel spacing, free spectral range, and extinction of a channel at the location of adjacent channels.

Fig. 4
Fig. 4

Design details: (a) dimensions of the second-order silicon microring filter, fabricated on an SOI platform, and (b) material stack cross-section in the bus-ring coupling region. The bus waveguides are 495 × 105 nm, the ring waveguides are 600 × 105 nm, and the ring radius is 6.735 µm. In the filterbank, the resonant frequencies for each channel are adjusted by slightly changing the ring radius and the waveguide width of each microring resonator, with respect to the previous channel.

Fig. 5
Fig. 5

Optical micrographs of the fabricated filterbanks: (a) dual twenty-channel, (b) twenty-channel counter-propagating, and (c) detailed view of two adjacent channels, after the fabrication of the titanium microheaters.

Fig. 6
Fig. 6

Illustration of the experimental setup used to characterize the filterbanks. EPIC: Electronic Photonic Integrated Circuit under test.

Fig. 7
Fig. 7

Filter response of one channel of the dual filterbank, before (left curve) and after (right curves) thermal tuning. The channel is tuned to a pre-set center wavelength (grey box), and the aligned channel has a bandwidth of 20 GHz, with over 35 dB extinction at ± 80 GHz, and about 45 dB extinction at ± 124 GHz ( ± 1 nm).

Fig. 8
Fig. 8

Drop-port responses of eleven adjacent channels of the fabricated second-order twenty-channel dual filterbank: (a) before and (b) after thermo-optic tuning of the resonant frequencies of the individual microring resonators. After tuning, the single-channel bandwidth is measured to be 20 GHz and the channel crosstalk is about −45 dB (extrapolated from data fit), for the pre-set channel-spacing of 124 GHz.

Fig. 9
Fig. 9

Drop-port responses of one channel of the counter-propagating filterbank, before (left curves) and after tuning (right curves). The tuned filter responses are similar and show a bandwidth of 20 GHz, with extinction of about 35 dB at frequencies ± 80 GHz apart form the center frequency, and about 45 dB at ± 124 GHz ( ± 1 nm).

Fig. 10
Fig. 10

Thermal crosstalk measurement: when microheaters A and B are actuated independently, different frequency shifts occur at each microring resonator. These shifts allow one to determine the elements of the tuning matrix.

Tables (2)

Tables Icon

Table 1 Frequency (and wavelength) values for the 124 GHz-spaced grid used to align all eleven channels.

Tables Icon

Table 2 Approximate frequency mismatch (in GHz) of each ring with respect to the pre-set frequency grid.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ Δ ν A Δ ν B ] = [ κ A κ AB κ BA κ B ] [ P A P B ] ,
[ κ A κ AB κ BA κ B ] = [ 30.0 11.9 5.3 27.6 ]         (GHz/mW)   ,

Metrics