Abstract

Using 3D Finite-Difference-Time-Domain simulations, we study the morphology of the laser-created damage inside fused silica. Among the competing effects limiting the intensity in the dielectric, we find the most important is the pulse defocusing by the plasma lens, partially balanced by the Kerr effect. Less important are collisional energy dissipation and laser depletion by multi-photon absorption. We also found that the profile of generated plasma is asymmetrical in the transverse cross-section, with the plasma extended along the direction perpendicular to the laser polarization.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  2. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  3. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [CrossRef]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  5. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  6. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
  7. J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
    [CrossRef]
  8. D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
    [CrossRef] [PubMed]
  9. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
    [CrossRef]
  10. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
    [CrossRef] [PubMed]
  11. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
    [CrossRef]
  12. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
    [CrossRef]
  13. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
    [CrossRef]
  14. D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
    [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 58–79.
  16. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).
  17. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  18. N. R. L. Plasma Formulary, (2002), p. 28.
  19. C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford Univ. Press, 2004), pp. 342–347.
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 186–213.
  21. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
    [CrossRef]
  22. J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
    [CrossRef]
  23. S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  24. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
    [CrossRef]

2009 (2)

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

2007 (4)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
[CrossRef] [PubMed]

2006 (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

2005 (3)

D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

1999 (1)

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

1939 (1)

J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Arnold, C. L.

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Bhardwaj, V. R.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Borrelli, N. F.

Bourgeade, A.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Breil, J.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Bulanov, S. S.

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Bychenkov, V. Yu.

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

Chowdhury, I. H.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

Chu, L. J.

J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Corkum, P. B.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Ertmer, W.

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Gaeta, A. L.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Gertsvolf, M.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

Gl¨ockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Grojo, D.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

Hafizi, B.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Hallo, L.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Heisterkamp, A.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Hnatovsky, C.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Homoelle, D.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Jean-Ruel, H.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Laporta, P.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Lei, S.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Lubatschowski, H.

Manheimer, W.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Mezel, C.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Naumov, A.

Osellame, R.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Peñano, J. R.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Popov, K. I.

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Rajeev, P. P.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Ramunno, L.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

Rayner, D. M.

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005).
[CrossRef] [PubMed]

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Rozmus, W.

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

Simova, E.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Smith, C.

Sprangle, P.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Stoian, R.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

Stratton, J. A.

J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Sydora, R. D.

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

Taylor, R. S.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Tikhonchuk, V. T.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Wielandy, S.

Wu, A. Q.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

Xu, X.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

Zigler, A.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

J. Appl. Phys. (1)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Phys. B (1)

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Plasmas (2)

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008).
[CrossRef]

K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009).
[CrossRef]

Phys. Rev. (1)

J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Phys. Rev. B (2)

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
[CrossRef]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (4)

N. R. L. Plasma Formulary, (2002), p. 28.

C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford Univ. Press, 2004), pp. 342–347.

A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 186–213.

A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 58–79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Multi-photon absorption test. (a) 1D propagation of a 30-fs laser pulse with Imax = 〈|S|〉max/2 = 1014 W/cm2 through a slab of fused silica. The slab is located between x = 40μm and x = 80μm. (b) Maximum transmitted intensity vs. intensity of the incident pulse.

Fig. 2
Fig. 2

Scheme of the focusing optics.

Fig. 3
Fig. 3

(Color online) Profile of the generated plasma. The plasma density is given in units of electron critical particle density. The position of the geometrical focal plane of the laser in the absence of nonlinear processes is x = 2.75 μm. (a) All nonlinear propagation effects (plasma dispersion, multi-photon absorption, Kerr effect) accounted for; (b) no MPA; (c) MPA only; (d) all nonlinear effects, with Γ = 0.

Fig. 4
Fig. 4

(Color online) Details of laser pulse propagation and plasma generation.

Fig. 5
Fig. 5

(Color online) Energy diagnostic of the interaction process.

Fig. 6
Fig. 6

Characterization of the profile from Fig. 3a. (a) Plasma density along the laser axis. (b) Transverse size, along the laser polarization, of the plasma, defined by level n = 0.4 ncr (solid line), n = 0.2 ncr (dashed line), n = 0.05 ncr (dotted line)

Fig. 7
Fig. 7

(Color online) (a) Plasma density in the transverse-cross-section passing through the maximum plasma particle density. (b) Quantity 〈E2〉 of the focused laser in the transverse direction, in the absence of nonlinear effects.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

× E = 1 c B t , × H = 1 c D t + 4 π c J ,
H = B , D = ( 1 + 4 π ( χ l + χ k E 2 ) ) E ,
J = J p + J M P A .
n t + ( n u ) = n M P I t , m n [ u t + ( u ) u ] = e n E p m Γ n u ,
n M P I t = σ 6 I 6 n s ( n s n ) ,
I = c 4 π E 2 .
Γ ν e ,
ν e = 2.91 × 10 6 n e [ cm 3 ] ln Λ T e [ eV ] 3 / 2 sec 1 ,
v q = e E m ω 0 ;
Γ 1 f s 1 .
n t = n M P I t , u t = e m E Γ u .
J p = e n u .
J M P A = E E 2 W i o n n M P I t ,
k ( ω ) = ω c 1 ω p 2 ω ( ω i Γ ) ,
E ω ( ω , 0 ) = Δ T 2 exp ( ( ω ω 0 ) 2 Δ T 2 4 )
E t ( t , x ) = 1 ( E ω ( ω , 0 ) exp ( i k ( ω ) x ) ) ,
E ( r ) = 1 4 π A [ i k ( n × H ) G + ( n × E ) × G + ( n E ) G ] d A , H ( r ) = 1 4 π A [ i k ( E × n ) G + ( n × H ) × G + ( n H ) G ] d A ,
G ( u ) = exp ( i k u ) / u ,
c s = T e M ,
E 1 E 2 = ɛ 2 ɛ 1 .

Metrics