Abstract

Manipulation of surface plasmon polaritons (SPP) by phase modulation of incident light beams is proposed with analytical and numerical verifications when an optical vortex (OV) beam is employed as an example. Fundamental functionalities of a plasmonic chip such as in-plane focusing, coupling and multiplexing of SPP by sequentially varying the topological charge of OV beam are demonstrated. Complementary to the manually-controlled optical-path-different technique reported in literature, the proposed method reveals a direct phase transform from OV beam to SPP with dynamic and reconfigurable advantages.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
    [CrossRef] [PubMed]
  5. Q. Wang, X.-C. Yuan, P. Tan, and D. G. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/abstract.cfm?URI=oe-16-23-19271 .
    [CrossRef]
  6. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  7. W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
    [CrossRef]
  8. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
    [CrossRef]
  9. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
    [CrossRef]
  10. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
    [CrossRef]
  11. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
    [CrossRef]
  12. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1 (2009).
    [CrossRef]
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/abstract.cfm?URI=ol-17-3-221 .
    [CrossRef] [PubMed]
  14. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [CrossRef]
  15. http://www.rsoftdesign.com/
  16. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
    [CrossRef]
  17. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
    [CrossRef]
  18. H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4(2), 153–159 (2009).
    [CrossRef]
  19. E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/abstract.cfm?URI=ol-34-15-2366 .
    [CrossRef] [PubMed]

2010 (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

2009 (4)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1 (2009).
[CrossRef]

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4(2), 153–159 (2009).
[CrossRef]

E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/abstract.cfm?URI=ol-34-15-2366 .
[CrossRef] [PubMed]

2008 (3)

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
[CrossRef] [PubMed]

Q. Wang, X.-C. Yuan, P. Tan, and D. G. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/abstract.cfm?URI=oe-16-23-19271 .
[CrossRef]

2007 (2)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

2006 (3)

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (2)

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

1992 (1)

Aigouy, L.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Bourhis, E.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

Bozhenolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chung, E.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Gierak, J.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Heckenberg, N. R.

Hiller, J. M.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hugonin, J. P.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

Imre, A.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4(2), 153–159 (2009).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Kim, Y. H.

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Lalanne, P.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4(2), 153–159 (2009).
[CrossRef]

Lee, H.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

McDuff, R.

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[CrossRef]

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pearson, J.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Polman, A.

A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
[CrossRef] [PubMed]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Sheppard, C. J. R.

Smith, C. P.

So, P. T. C.

Steele, J. M.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

Tan, P.

Tang, W. T.

Vlasko-Vlasov, V. K.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wang, B.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

Wang, Q.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Welp, U.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

White, A. G.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[CrossRef]

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yuan, X.-C.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

Zhan, Q.

Zhang, D. G.

Zhang, X.

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
[CrossRef]

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91(8), 083115 (2007).
[CrossRef]

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Nano Lett. (1)

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhenolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit coupler for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008).
[CrossRef]

Plasmonics (1)

H. Kim and B. Lee, “Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination,” Plasmonics 4(2), 153–159 (2009).
[CrossRef]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Science (2)

A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

http://www.rsoftdesign.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic configuration of SPP phase modulation with OV beam which is focused by the objective lens onto the subwavelength slit: (a) top view and (b) side view. (c) Typical phase map of OV beam of topological charge l = 20. (d) Normalized |Etotal |2 distribution of focused SPP generated by x-polarized OV beam of l = 20 taken from 100 nm above the silver surface. The radius, width and opening angle of the arc are 6 μm, 240 nm and 72° respectively. White arrow indicates center of the focus.

Fig. 2
Fig. 2

Normalized |Ez |2 distribution generated by OV beam of (a) (b) l = −20 and (c) (d) l = 40. The displayed area is 10μm × 12μm. (a) (c) are FDTD simulation results, and (b) (d) are the results from theoretical model. White arrow indicates center of the focus. (e) Dependence of diffraction angle of the focal spot on the topological charges for R = 6 μm.

Fig. 3
Fig. 3

The multiplexing of SPP into dielectric-loaded surface plasmon waveguides with 1.3 μm center-to-center separation using OV beams of topological charges (a) l = −20, (b) l = 1, (c) l = 20 and (d) l = 40. The displayed area is 12μm × 12μm. The detailed arrangement is shown in the inset of Fig. 3(d). Blue colour is the PMMA and light gray is the Ag surface. The thickness and width of the PMMA stripe are both 250 nm.

Fig. 4
Fig. 4

(a) The dependence of the ratio of optical energy in the two opposite directions on the slit width and incident angle (in logarithm scale). (b) An example of unidirectional excitation and focus of SPP by OV beam of l = 20. The slit width is 400 nm, and the incident angle is 20°. White arrow indicates center of the focus.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( r , θ , z ) ( 2 r w ) l L p l ( 2 r 2 w 2 ) exp ( r 2 w 2 ) exp { i [ Φ ( z ) + k r 2 2 R + l θ ] }
E z ( r , ϕ , z ) = θ 0 / 2 θ 0 / 2 E 0 ( r ) cos θ e i l θ e k z z e i k s p p | r R | d θ

Metrics