Abstract

This work analyzed and addressed the estimate of the broadband emissivities for the spectral domains 3-14μm (ε314) and 3-∞μm (ε3). Two linear narrow-to-broadband conversion models were proposed to estimate broadband emissivities ε314 and ε3 using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived emissivities in three thermal infrared channels 29 (8.4-8.7μm), 31 (10.78-11.28μm) and 32 (11.77-12.27μm). Two independent spectral libraries, the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library and the MODIS UCSB (University of California, Santa Barbara) emissivity library, were used to calibrate and validate the proposed models. Comparisons of the estimated broadband emissivities using the proposed models and the calculated values from the spectral libraries, showed that the proposed method of estimation of broadband emissivity has potential accuracy and the Root Mean Square Error (RMSE) between estimated and calculated broadband emissivities is less than 0.01 for both ε314and ε3.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Blondin, “Parameterization of land-surface processes in numerical weather prediction,” in Land surface Evaporation, edited by T. J. Schmugge and J. Andre, pp. 31–54, Spring-Verlag, New York (1991).
  2. A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).
  3. K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
    [CrossRef]
  4. K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
    [CrossRef]
  5. M. Jin and S. L. Liang, “An improved land surface emissivity parameter for land surface model using global remote sensing observations,” J. Clim. 19(12), 2867–2881 (2006).
    [CrossRef]
  6. Z. Wang and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Rem. Sens. 34(4), 892–905 (1996).
    [CrossRef]
  7. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
    [CrossRef]
  8. W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
    [CrossRef]

2009 (1)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

2006 (1)

M. Jin and S. L. Liang, “An improved land surface emissivity parameter for land surface model using global remote sensing observations,” J. Clim. 19(12), 2867–2881 (2006).
[CrossRef]

2005 (1)

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

2003 (1)

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

1999 (1)

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).

1997 (1)

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

1996 (1)

Z. Wang and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Rem. Sens. 34(4), 892–905 (1996).
[CrossRef]

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

Dozier, J.

Z. Wang and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Rem. Sens. 34(4), 892–905 (1996).
[CrossRef]

Feng, Y.

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

French, A.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

Gupta, S. K.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).

Haginoya, S.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

Jacob, F.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

Jin, M.

M. Jin and S. L. Liang, “An improved land surface emissivity parameter for land surface model using global remote sensing observations,” J. Clim. 19(12), 2867–2881 (2006).
[CrossRef]

Kratz, D. P.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).

Liang, S. L.

M. Jin and S. L. Liang, “An improved land surface emissivity parameter for land surface model using global remote sensing observations,” J. Clim. 19(12), 2867–2881 (2006).
[CrossRef]

Liu, J.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Ogawa, K.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

Schmugge, T.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

Snyder, W. C.

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

Sparrow, M.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Wan, Z.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Wang, K.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Wang, P.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Wang, Z.

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

Z. Wang and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Rem. Sens. 34(4), 892–905 (1996).
[CrossRef]

Wilber, A. C.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).

Zhang, Y.

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

Zhou, X.

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Geophys. Res. Lett. (1)

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing: A case study in a part of Sahara Desert,” Geophys. Res. Lett. 30(2), 1067 (2003), doi:.
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

Z. Wang and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Rem. Sens. 34(4), 892–905 (1996).
[CrossRef]

J. Clim. (1)

M. Jin and S. L. Liang, “An improved land surface emissivity parameter for land surface model using global remote sensing observations,” J. Clim. 19(12), 2867–2881 (2006).
[CrossRef]

J. Geophys. Res. (1)

K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and S. Haginoya, “Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products,” J. Geophys. Res. 110(D11), D11109 (2005), doi:.
[CrossRef]

Nasa. Tp. (1)

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrieval of longwave radiation,” Nasa. Tp. 30, 209362 (1999).

Remote Sens. Environ. (2)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[CrossRef]

W. C. Snyder, Z. Wang, Y. Zhang, and Y. Feng, “Thermal infrared (3-14μm) bi-directional reflectance measurement of sands and soils,” Remote Sens. Environ. 60(1), 101–109 (1997).
[CrossRef]

Other (1)

C. Blondin, “Parameterization of land-surface processes in numerical weather prediction,” in Land surface Evaporation, edited by T. J. Schmugge and J. Andre, pp. 31–54, Spring-Verlag, New York (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

General properties of the ASTER spectral library for soil, rock, vegetation, water and snow/ice: (a) Average of spectral emissivity, (b) standard deviation of spectral emissivity.

Fig. 2
Fig. 2

Fraction of the Earth emitted radiant flux in different spectral intervals

Fig. 3
Fig. 3

Comparison of the broadband emissivities calculated using Eq. (3) with those estimated using Eqs. (7) and (8) from ASTER library: (a) for broadband emissivity ε 3 14 , (b) for broadband emissivity ε 3 .

Fig. 4
Fig. 4

Comparison of the broadband emissivities calculated using Eq. (3) with those estimated using Eqs. (7) and (8) from UCSB library: (a) for broadband emissivity ε 3 14 , (b) for broadband emissivity ε 3 .

Tables (3)

Tables Icon

Table 1 Respective weight of the spectral interval in the emitted flux

Tables Icon

Table 2 Regression coefficients of Eqs. (7) and (8) obtained using ASTER spectral library

Tables Icon

Table 3 Statistical error and range of emissivity in calibration and validation with two different spectral libraries.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 0 Ω ε λ ( θ , φ ) B λ ( T λ ( θ , φ ) ) cos θ d Ω d λ = ε w σ T 4 ,
ε λ = E λ / B λ ( T )
ε λ 1 λ 2 = λ 1 λ 2 ε λ B λ ( T ) d λ λ 1 λ 2 B λ ( T ) d λ ,
ε i = λ i 1 λ i 2 f ( λ ) i ε λ B λ ( T ) d λ λ i 1 λ i 2 f i ( λ ) B λ ( T ) d λ ,
ε λ 1 λ 2 = i = 1 n λ ( i ) λ ( i + 1 ) ε λ B λ ( T ) d λ λ 1 λ 2 B λ ( T ) d λ = i = 1 n g i ε i ' i = 1 n g i ε i ,
ε i ' = λ ( i ) λ ( i + 1 ) ε λ B λ ( T ) d λ λ ( i ) λ ( i + 1 ) B λ ( T ) d λ ,
g i = λ ( i ) λ ( i + 1 ) B λ ( T ) d λ λ 1 λ 2 B λ ( T ) d λ .
ε 3 14 = a 0 + a 1 × ε 29 + a 2 × ε 31 + a 3 × ε 32
ε 3 = b 0 + b 1 × ε 29 + b 2 × ε 31 + b 3 × ε 32

Metrics