Abstract

X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4―12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Howells, C. Jacobsen, T. Warwick, and A. van den Bos, “Principles and applications of zone plate X-ray microscopes,” in Science of Microscopy, Eds.: P. W. Hawkes and J. C. H. Spence (Springer New York), Chapter 13, 835–926 (2008).
  2. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
    [CrossRef]
  3. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
    [CrossRef] [PubMed]
  4. C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998).
    [CrossRef] [PubMed]
  5. H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009).
    [CrossRef] [PubMed]
  6. G. Schneider, “X-ray microscopy: methods and perspectives,” Anal. Bioanal. Chem. 376(5), 558–561 (2003).
    [CrossRef] [PubMed]
  7. P. Fischer, “Studying nanoscale magnetism and its dynamics with soft X-ray microscopy,” IEEE Trans. Magn. 44(7), 1900–1904 (2008).
    [CrossRef]
  8. J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
    [CrossRef] [PubMed]
  9. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 2000), Chapter 9.
  10. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
    [CrossRef] [PubMed]
  11. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
    [CrossRef] [PubMed]
  12. S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
    [CrossRef] [PubMed]
  13. C. Jacobsen, “Soft x-ray microscopy,” Trends Cell Biol. 9(2), 44–47 (1999).
    [CrossRef] [PubMed]
  14. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
    [CrossRef]
  15. Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
    [CrossRef] [PubMed]
  16. J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
    [CrossRef]
  17. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
    [CrossRef]
  18. D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983).
    [CrossRef]
  19. Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
    [CrossRef]
  20. P. Charalambous, and A. Firsova, “Enhancement of zone plate efficiency by evaporation” in X-ray Microscopy IV (Proc. of the 4th Intern. Conf.), Eds.: V. V. Aristov and A. I. Erko (Chernogolovka, Russia) 504–509 (1994).
  21. T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
    [CrossRef]
  22. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill International Editions, 1996), Chapter 2.
  23. J. A. Ferrari, “Fast Hankel transform of order zero,” J. Opt. Soc. Am. A 12(8), 1812–1813 (1995).
    [CrossRef]
  24. J. A. Ferrari, D. Perciante, and A. Dubra, “Fast Hankel transform of nth order,” J. Opt. Soc. Am. A 16(10), 2581–2582 (1999).
    [CrossRef]
  25. M. Born, and E. Wolf, Principles of optics, 7th (expanded) Edition (Cambridge University Press, 1999), Chaper 8.
  26. J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
    [CrossRef] [PubMed]
  27. DECTRIS Ltd, Neuenhoferstrasse 107, CH-5400 Baden, Switzerland. URL: http://www.dectris.ch
  28. B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
    [CrossRef] [PubMed]
  29. M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
    [CrossRef] [PubMed]
  30. A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
    [CrossRef] [PubMed]

2010 (4)

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

2009 (4)

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
[CrossRef] [PubMed]

H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009).
[CrossRef] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

2008 (3)

P. Fischer, “Studying nanoscale magnetism and its dynamics with soft X-ray microscopy,” IEEE Trans. Magn. 44(7), 1900–1904 (2008).
[CrossRef]

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

2007 (4)

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

2004 (1)

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

2003 (1)

G. Schneider, “X-ray microscopy: methods and perspectives,” Anal. Bioanal. Chem. 376(5), 558–561 (2003).
[CrossRef] [PubMed]

2002 (1)

Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
[CrossRef]

1999 (2)

1998 (1)

C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998).
[CrossRef] [PubMed]

1995 (2)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

J. A. Ferrari, “Fast Hankel transform of order zero,” J. Opt. Soc. Am. A 12(8), 1812–1813 (1995).
[CrossRef]

1983 (1)

D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983).
[CrossRef]

Aaltonen, T.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

Ade, H.

H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009).
[CrossRef] [PubMed]

Anderson, E. H.

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Bunk, O.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Chao, W.

Chen, C. H.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Chen, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Chen, Y. T.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Chiu, C. W.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Choi, Y.-K.

Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
[CrossRef]

David, C.

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

de Jonge, M. D.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

Denecke, M.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Dierolf, M.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

Dubra, A.

Efremow, N. N.

D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983).
[CrossRef]

Färm, E.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

Feng, Y.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Ferrari, J. A.

Feser, M.

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
[CrossRef] [PubMed]

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Fink, R. H.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Fischer, P.

Flanders, D. C.

D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983).
[CrossRef]

Gorelick, S.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

Guttmann, P.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Guzenko, V.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Guzenko, V. A.

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

Heim, S.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Henrich, B.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

Holzner, C.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

Hornberger, B.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
[CrossRef] [PubMed]

Howells, M.

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Hu, C.

Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
[CrossRef]

Hwu, Y.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Jacobsen, C.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
[CrossRef] [PubMed]

C. Jacobsen, “Soft x-ray microscopy,” Trends Cell Biol. 9(2), 44–47 (1999).
[CrossRef] [PubMed]

C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998).
[CrossRef] [PubMed]

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Je, J. H.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Jefimovs, K.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Jeng, S. T.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Kewish, C. M.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Kim, J.

King, T.-J.

Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
[CrossRef]

Kirz, J.

C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998).
[CrossRef] [PubMed]

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Kraft, P.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

Legnini, D.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

Leskela, M.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

Lin, H. M.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Liu, C. J.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Lo, T. N.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Lyon, A.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Maassdorf, A.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Margaritondo, G.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

McNulty, I.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

Menzel, A.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Paterson, D.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

Perciante, D.

Pfeiffer, F.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

Pilvi, T.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Raabe, J.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Rehbein, S.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Rekawa, S.

Rishton, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Ritala, M.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Sammelselg, V.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

Sassolini, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Schneider, G.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

G. Schneider, “X-ray microscopy: methods and perspectives,” Anal. Bioanal. Chem. 376(5), 558–561 (2003).
[CrossRef] [PubMed]

Senoner, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Shiue, J.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Stoll, H.

H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009).
[CrossRef] [PubMed]

Thibault, P.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Thieme, J.

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

Vila-Comamala, J.

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Vogt, S.

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

Walker, C. T.

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Wang, C. L.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Wang, J. Y.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Werner, S.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Wu, S. R.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Yang, C. C.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Yin, G. C.

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

Yun, W.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

Zeng, X.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

AIP Conf. Proc. (1)

J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. Schneider, “X-ray microscopy: methods and perspectives,” Anal. Bioanal. Chem. 376(5), 558–561 (2003).
[CrossRef] [PubMed]

Environ. Sci. Technol. (1)

J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007).
[CrossRef] [PubMed]

IEEE Trans. Electron. Dev. (1)

Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002).
[CrossRef]

IEEE Trans. Magn. (1)

P. Fischer, “Studying nanoscale magnetism and its dynamics with soft X-ray microscopy,” IEEE Trans. Magn. 44(7), 1900–1904 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Synchrotron Radiat. (1)

Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (2)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[CrossRef]

D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983).
[CrossRef]

Nanotechnology (1)

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Nat. Struct. Biol. (1)

C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (3)

M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

C. Jacobsen, “Soft x-ray microscopy,” Trends Cell Biol. 9(2), 44–47 (1999).
[CrossRef] [PubMed]

Ultramicroscopy (3)

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010).
[CrossRef] [PubMed]

B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007).
[CrossRef] [PubMed]

Other (6)

DECTRIS Ltd, Neuenhoferstrasse 107, CH-5400 Baden, Switzerland. URL: http://www.dectris.ch

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill International Editions, 1996), Chapter 2.

M. Born, and E. Wolf, Principles of optics, 7th (expanded) Edition (Cambridge University Press, 1999), Chaper 8.

P. Charalambous, and A. Firsova, “Enhancement of zone plate efficiency by evaporation” in X-ray Microscopy IV (Proc. of the 4th Intern. Conf.), Eds.: V. V. Aristov and A. I. Erko (Chernogolovka, Russia) 504–509 (1994).

M. Howells, C. Jacobsen, T. Warwick, and A. van den Bos, “Principles and applications of zone plate X-ray microscopes,” in Science of Microscopy, Eds.: P. W. Hawkes and J. C. H. Spence (Springer New York), Chapter 13, 835–926 (2008).

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 2000), Chapter 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of a zone-doubled FZP made of HSQ resist and iridium. The HSQ resist template is coated by a uniform layer of iridium of thickness w, which matches the outermost zone width of the FZP, Δr. The structures have an iridium zone height h.

Fig. 2
Fig. 2

Comparison of the Fresnel wavefront propagation for (a) an ordinary FZP with an outermost zone width of Δr = 40 nm and (b) a zone-doubled FZP with an effective outermost zone width of w = Δr = 20 nm. For both structures, a similar line periodicity has to be written during the electron beam lithography step. In the calculations, the lens diameter was 100 µm, the iridium zone height, h, was 600 nm, the central stop diameter was 35 µm and the photon energy was 6.2 keV. The positions of the foci corresponding to several diffraction orders are indicated. (c) Beam waist in the vicinity of the 1st order focus of the zone-doubled FZP, showing a depth of focus, DOF, of 8 µm. (d) Comparison of the calculated intensity profiles at the focus under several conditions. All intensities were normalized to peak values for ease of comparison. There is no significant shape difference between the focal spots of ordinary and zone-doubled FZPs. A 2nd order focus with a spot size reduced by a factor of two in comparison to the 1st order focus is expected for the zone-doubled diffractive lenses.

Fig. 3
Fig. 3

Scanning electron micrographs of a zone-doubled FZP made of HSQ resist and iridium (100 µm diameter, outermost zone width of w = Δr = 20 nm and height of h ~550 nm). (a) and (b) show overviews of the diffractive X-ray lens. (c) High magnification top view of the outermost region consisting of 20 nm-wide lines made of HSQ resist in 80 nm period before the iridium coating. (d) High magnification top view of the zone-doubled structure after the iridium coating by atomic layer deposition. Tilted views (at 50°) of the edge of the zone-doubled FZP (e) before and (f) after the iridium deposition. The final structure contains an effective iridium grating made of 20 nm lines and spaces with an aspect ratio of h/w > 27.5.

Fig. 4
Fig. 4

STXM images acquired using zone-doubled FZPs with a diameter of 100 µm. (a) Transmission signal from zone-doubled grating containing 20 nm lines and spaces. The gaps, the iridium lines and HSQ resist template can be clearly distinguished. The scan was acquired using a FZP with an outermost zone width of w = Δr = 20 nm, a dwell time of 50 ms and step size of 5 nm (ID06 beamline, ESRF). (b) Differential phase contrast (DPCx and DPCy) and phase images from a zone-doubled grating made of 15 nm lines and spaces. The differential phase contrast images were calculated from the displacement of the full divergent radiation cone recorded by the PILATUS 2M pixel detector at each scanning position. The phase was obtained by integration from the differential phase contrast images. The image was acquired using a FZP with an outermost zone width of w = Δr = 15 nm, a dwell time of 15 ms and a step size of 2.5 nm (cSAXS beamline, SLS).

Fig. 5
Fig. 5

Experimentally obtained 1st order diffraction efficiency of zone-doubled FZPs as function of photon energy. The structures have a 100 µm diameter, an iridium zone height of h ~550 nm and outermost zone widths, w = Δr, of 25 and 20 nm.

Tables (2)

Tables Icon

Table 1 Calculated diffraction efficiencies for ordinary and zone-doubled FZPs at 6.2 keV photon energy from the wavefront propagation in Fig. 2. The structures are made of an iridium height of h = 600 nm.

Tables Icon

Table 2 Calculated and measured 1st order diffraction efficiencies of 100 µm diameter zone-doubled FZPs at 6.2 keV photon energy.

Metrics