Abstract

Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [CrossRef]
  2. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008).
    [CrossRef] [PubMed]
  3. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
    [CrossRef]
  4. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
    [CrossRef] [PubMed]
  5. T. Zhong, X. Hu, F. N. C. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 1m telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
    [CrossRef] [PubMed]
  6. E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
    [CrossRef]
  7. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [CrossRef]
  8. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
    [CrossRef] [PubMed]
  9. X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
    [CrossRef] [PubMed]
  10. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
    [CrossRef]
  11. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express 17, 23557–23564 (2009).
    [CrossRef]
  12. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
    [CrossRef] [PubMed]
  13. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
    [CrossRef]
  14. X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
    [CrossRef]
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
    [CrossRef]
  16. R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
    [CrossRef]
  17. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef]
  18. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  20. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef]
  21. X. Hu, E. A. Dauler, A. J. Kerman, J. K. W. Yang, J. E. White, C. H. Herder, and K. K. Berggren, “Using surface plasmons to enhance the speed and efficiency of superconducting nanowire single-photon detectors,” 2009 Confernce on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, 2347–2348 (2009).
  22. F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  23. F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  24. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
    [CrossRef]
  25. G. Veronis, and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [CrossRef] [PubMed]
  26. B. A. Munk, Frequency Selective Surface: Theory and Design (Wiley, 2000).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc. 1998).
  28. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
    [CrossRef] [PubMed]
  29. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
    [CrossRef]
  30. X. Hu, F. Marsili, F. Najafi, and K. K. Berggren, “Mid-infrared single-photon detection using superconducting nanowires integrated with nano-antennae,” 2010 Quantum Electronics and Laser Science Conference, QThD5 (2010).

2010

2009

2008

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[CrossRef] [PubMed]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[CrossRef]

2007

G. Veronis, and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

2006

2005

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

2004

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
[CrossRef]

2002

F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

2001

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

1999

F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Anant, V.

Asobe, M.

Baek, B.

Barron, R. O.

Battle, P.

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Berggren, K. K.

T. Zhong, X. Hu, F. N. C. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 1m telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
[CrossRef] [PubMed]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[CrossRef] [PubMed]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[CrossRef]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[CrossRef] [PubMed]

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[CrossRef] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Caplan, D. O.

Carney, J. J.

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Dauler, E. A.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[CrossRef]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[CrossRef] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[CrossRef] [PubMed]

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[CrossRef] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Dorenbos, S. N.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Ebbesen, T. W.

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Eisler, H.-J.

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Fan, S.

Fejer, M. M.

Fiore, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Fujiwara, M.

Gaggero, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

García-Vidal, F. J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Genet, C.

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[CrossRef] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Hadfield, R.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Hamilton, S. A.

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[CrossRef] [PubMed]

Hecht, B.

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Heeres, R. W.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Herder, C.

Holzwarth, C. W.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[CrossRef]

Honjo, T.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Hu, X.

Inoue, K.

Kamada, H.

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Kerman, A. J.

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Koene, B.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Konstantinos, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kouwenhoven, L. P.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Lagoudakis, K.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Langrock, C.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Leoni, R.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Levy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Marsili, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Martin, O. J. F.

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Martín-Moreno, L.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Masciarelli, D.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[CrossRef]

Mattioli, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Miki, S.

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Mirin, R. P.

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

Molnar, R. J.

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

Mühlschlegel, R.

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Najafi, F.

Nam, S. W.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[CrossRef]

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Nishida, Y.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Pohl, D. W.

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Roberts, T. D.

Robinson, B. S.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[CrossRef] [PubMed]

Rosfjord, K. M.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Sasaki, M.

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Solomon, G. S.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Stevens, M. J.

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

Stevens, M. L.

Tadanaga, O.

Takeda, M.

Takesue, H.

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Veronis, G.

Voronov, B.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wang, Z.

White, J. E.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Wong, F. N. C.

Xie, X.

Yamamoto, Y.

Yang, J. K. W.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Zhang, Q.

Zhong, T.

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Zwiller, V.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

IEEE Trans. Appl. Supercond.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[CrossRef]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007).
[CrossRef]

Nano Lett.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010).
[CrossRef] [PubMed]

Nat. Photonics

H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Nature

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998).
[CrossRef]

Opt. Express

G. Veronis, and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[CrossRef] [PubMed]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[CrossRef] [PubMed]

S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express 17, 23557–23564 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. A

E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008).
[CrossRef]

Phys. Rev. B

F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004).
[CrossRef]

Phys. Rev. Lett.

F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Science

R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005).
[CrossRef]

Other

X. Hu, E. A. Dauler, A. J. Kerman, J. K. W. Yang, J. E. White, C. H. Herder, and K. K. Berggren, “Using surface plasmons to enhance the speed and efficiency of superconducting nanowire single-photon detectors,” 2009 Confernce on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, 2347–2348 (2009).

B. A. Munk, Frequency Selective Surface: Theory and Design (Wiley, 2000).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc. 1998).

X. Hu, F. Marsili, F. Najafi, and K. K. Berggren, “Mid-infrared single-photon detection using superconducting nanowires integrated with nano-antennae,” 2010 Quantum Electronics and Laser Science Conference, QThD5 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Explanation of the concept development of the superconducting nanowire single-photon detector integrated with optical nano-antennae. The upper panel shows the plan-view schematics of the device structures. The middle panel shows the cross sections. The lower panel shows schematics of the output signals. In order to cover an area with NbN nanowire meander, a dense meander in (a) or a sparse meander in (b) can be used. The nanowire in (a) is long, so that the detector is slow; the nanowire in (b) is short, so that the detector is fast. However, the large gaps between adjacent nanowires in (b) allow incident photons to pass through the gaps, so that the absorption is weak. As shown in (c), the idea is to both fabricate the HSQ structure with appropriate height and put gold between the adjacent HSQ structures and on top of the HSQ to collect the incident photons, block the path of transmission, and reduce reflection.

Fig. 2
Fig. 2

Study of the non-resonant nano-optical collection effect. The figure shows the absorption enhancement as a function of the width of the slot, w. The model studied is shown in the inset. The model consists of a gold-HSQ-gold slot waveguide on top of a sapphire substrate and the NbN nanowire at the aperture of the waveguide. The experimental value of the width of the nanowire is 80 nm. The monotonic decrease, except for a few fine features, of the absorption enhancement with the increase of the slot width suggests that this effect is an edge effect.

Fig. 3
Fig. 3

Study of the resonant nano-optical cavity effect. This figure shows the simulated absorption enhancement as a function of cavity length, l. The model studied is shown in the inset. The absorption enhancement peaks at l∼150 nm and, correspondingly, the absorption enhancement, including the nonresonant collection effect, reaches ∼6.

Fig. 4
Fig. 4

Absorption enhancement by the optical nano-antennae. (a) shows the model used in this study. It is an infinite periodic structure with the unit cell shown in the inset of Fig. 3. The pitch of the structure is denoted as p. (b) shows the absorption enhancement (left y-axis) and absolute absorption (right y-axis) as a function of the pitch, p. The inference pattern is due to the nanostructured interface between the gold and the sapphire substrate, which forms a frequency-selective surface. The interference makes the total absorption enhancement, including three effects, peak at the pitch 600 nm. The maximum absorption enhancement is ∼8, and the corresponding absolute absorption is 47%.

Fig. 5
Fig. 5

Simulated intensity distribution and time-averaged Poynting vectors. In (a), the surface color represents the field intensity and the arrows show the time-average Poynting vectors. The capability of collecting and focusing the incident light by the optical nano-antennae can be seen. In (b), the line shows the intensity distribution along the white dashed line in (a), illustrating that the NbN nanowire is positioned near the field maximum.

Fig. 6
Fig. 6

Scanning-electron micrograph of the fabricated superconducting nanowire single-photon detector integrated with optical nano-antennae. (a) shows a plan-view scanning-electron micrograph. The active area of the detector is 9 μm by 9 μm. The linear structures surrounding the active area are required for proximity-effect correction in scanning-electron-beam lithography. (b) shows a cross-section image. The HSQ fence-like structures are ∼80-nm wide and ∼180-nm tall. The pitch of the meander is 600 nm. The NbN nanowire itself is under the HSQ and is not visible on the micrograph. The gold surrounding the HSQ fence-like structures forms the optical nano-antennae. Each gold structure between two adjacent HSQ fence-like structures was observed to be in the shape of a trapezoid, resulting in voids between the gold and the HSQ fence-like structures. These voids were attributed to migration of the gold on top of the HSQ fence-like structures during the evaporation process, which gradually shadowed the subsequent evaporation.

Fig. 7
Fig. 7

Cross-section schematic illustrating the appearance of voids and the model used for evaluating the effect of the voids on the absorption of the NbN nanowire. (a) These voids were attributed to migration of the gold on top of the HSQ during the evaporation process, which gradually shadowed the subsequent evaporation. (b) The geometry of a unit cell was used in finite-element optical simulation. A coordinate system was established to define the geometry. The x and z coordinates in nm for the points a, b, c, d, e, and f were (40, 186.5), (40, 486.5), (110, 300), (120, 300), (40, 90), and (300, 300), respectively.

Fig. 8
Fig. 8

Graph of measured device efficiency for both TM and TE polarizations as a function of normalized bias current, ib/Ic, where Ic is the critical current of the superconducting nanowire. The device efficiency was measured in a probe station at baseplate temperature of 2.1 K. When biased at 97.5% of its critical current, the device efficiency was 47% and 3.5% for TM and TE polarizations, respectively. The critical current, Ic, was 11.7 μA.

Fig. 9
Fig. 9

Device efficiency of the detectors with maximum device efficiency larger than 10% on the chip. The dominant response to photons in the TM-polarized incident photons is the key feature of the antenna effect. Each error bar represents 10% fractional error, which is primarily due to the calibration of the optical-spot diameter in the device efficiency measurement.

Fig. 10
Fig. 10

Histogram of timing jitter of the superconducting nanowire single-photon detector integrated optical nano-antennae for (a) TM and (b) TE polarizations at the bias of 97.5% of the critical current of the nanowire. The lines are Gaussian fits, with full widths at half maxima of 39 ps and 45 ps for (a) TM and (b) TE polarizations, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 90 % = η 1 [ 90 % η ( I b ) ] ,
1 exp [ τ / ( L k / R ) ] = I 90 % / I b ,
τ = ( L k / R ) ln [ 1 / ( 1 I 90 % / I b ) ] .
g ( t ) = g 0 + a σ π / 2 exp [ 2 ( t t 0 ) 2 σ 2 ] ,

Metrics