Abstract

Although patterning effects (PEs) are known to be a limiting factor of ultrafast photonic switches based on semiconductor optical amplifiers (SOAs), a simple approach for their evaluation in numerical simulations and experiments is missing. In this work, we experimentally investigate and verify a theoretical prediction of the pseudo random binary sequence (PRBS) length needed to capture the full impact of PEs. A wide range of SOAs and operation conditions are investigated. The very simple form of the PRBS length condition highlights the role of two parameters, i.e. the recovery time of the SOAs as well as the operation bit rate. Furthermore, a simple and effective method for probing the maximum PEs is demonstrated, which may relieve the computational effort or the experimental difficulties associated with the use of long PRBSs for the simulation or characterization of SOA-based switches. Good agrement with conventional PRBS characterization is obtained. The method is suitable for quick and systematic estimation and optimization of the switching performance.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25, 103–108 (2007).
    [CrossRef]
  2. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32, 835–837 (2007).
    [CrossRef] [PubMed]
  3. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).
    [CrossRef]
  4. M. L. Nielsen, and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B 21, 1606–1619 (2004).
    [CrossRef]
  5. S. Kumar, B. Zhang, and A. E. Willner, “Elimination of data pattern dependence in SOA-based differentialmode wavelength converters using optically-induced birefringence,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThB3.
    [CrossRef] [PubMed]
  6. R. Giller, X. Yang, R. J. Manning, R. P. Webb, and D. Cotter, “Pattern effect mitigation in the turbo-switch,” in International Conference on Photonics in Switching (2006).
  7. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
    [CrossRef]
  8. R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18, 13502–13509 (2010).
    [CrossRef] [PubMed]
  9. F. J. MacWilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
    [CrossRef]
  10. A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantumdot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
    [CrossRef]
  11. J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
    [CrossRef]
  12. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
    [CrossRef]

2010 (2)

R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18, 13502–13509 (2010).
[CrossRef] [PubMed]

J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
[CrossRef]

2007 (3)

2004 (3)

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

1976 (1)

F. J. MacWilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Ben Ezra, S.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Bennion, I.

Berg, T. W.

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantumdot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Cabot, S.

Dailey, J. M.

de Waardt, H.

Dorren, H. J. S.

Freude, W.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Giles, C. R.

Jaques, J. J.

Khoe, G. D.

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Koonen, A. M. J.

Leuthold, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).
[CrossRef]

Li, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Li, Z.

Liu, Y.

MacWilliams, F. J.

F. J. MacWilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[CrossRef]

Manning, R. J.

Marculescu, A.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Marom, D. M.

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Mørk, J.

J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
[CrossRef]

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantumdot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

M. L. Nielsen, and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B 21, 1606–1619 (2004).
[CrossRef]

Nielsen, M. L.

Ryf, R.

Shu, X.

Sloane, N. J. A.

F. J. MacWilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[CrossRef]

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Tangdiongga, E.

Tsadka, S.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Tzadok, S.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Uskov, A. V.

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantumdot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Vorreau, P.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Wang, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

Webb, R. P.

Xu, J.

J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
[CrossRef]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Zhang, X.

J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantumdot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

J. Xu, X. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46, 87–94 (2010).
[CrossRef]

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19, 1955–1957 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

F. J. MacWilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[CrossRef]

Other (2)

S. Kumar, B. Zhang, and A. E. Willner, “Elimination of data pattern dependence in SOA-based differentialmode wavelength converters using optically-induced birefringence,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThB3.
[CrossRef] [PubMed]

R. Giller, X. Yang, R. J. Manning, R. P. Webb, and D. Cotter, “Pattern effect mitigation in the turbo-switch,” in International Conference on Photonics in Switching (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Ultrafast photonic switch based on SOA followed by offset filtering. The pump signal is used to switch the intensity of the probe, which may be exploited for wavelength conversion, optical time division demultiplexing, optical logic, etc. (b) Illustration and definition of patterning effects (PEs). SOA: semiconductor optical amplifier; OF: optical filter.

Fig. 2
Fig. 2

Experimental setup for the PE measurements. MZM: Mach-Zehnder modulator; PM: phase modulator; SMF: standard single mode fiber; BPG: bit-pattern generator; SOA: semiconductor optical amplifier; BPF: band-pass filter; MRR: micro-ring resonator.

Fig. 3
Fig. 3

(a) Optical spectra of the probe signal at the output of the SOA (black) and the MRR (blue), as well as transfer functions of the MRR (red-dashed) and the BPF (green-dashed). Pump signal: 40 Gbit/s 27 – 1 PRBS. SOA2 listed in Table 1 is used. (b) Normalized probe traces at the output of the four tested SOAs for SOA recovery time measurements.

Fig. 4
Fig. 4

(a) PE as a function of bit-pattern length (n) for SOA2. B = 10, 20 and 40 Gbit/s. (b) Normalized patterning effects as a function of n for B = 40 Gbit/s.

Fig. 5
Fig. 5

Ratio of the measured PE at the critical bit-pattern length nc, calculated according to Eq. (1), and the full PE, PEmax, for the four investigated SOAs (identified by their recovery time τs).

Fig. 6
Fig. 6

(a) Test pump signal for the implementation of the periodic method and (b) corresponding converted probe signal. SOA1 is used. (c) Ratio of PE derived from the periodic method PEprd and PEmax for the four investigated SOAs (identified by τs).

Tables (2)

Tables Icon

Table 1 SOA operating conditions and measured recovery times (τs). The probe power is 0 dBm in all cases.

Tables Icon

Table 2 Calculated critical bit-pattern length (nc) according to Eq. (1). The values of nc scaled to 80 Gbit/s and 160 Gbit/s are also listed out as a reference.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n c = B × τ s + 1 ,

Metrics