Abstract

Despite the progress in the engineering of structures to enhance photocurrent in thin film solar cells, there are few comprehensive studies which provide general and intuitive insight into the problem of light trapping. Also, lack of theoretical propositions which are consistent with fabrication is an issue to be improved. We investigate a real thin film solar cell with almost conformal layers grown on a 1D grating metallic back-reflector both experimentally and theoretically. Photocurrent increase is observed as an outcome of guided mode excitation in both theory and experiment by obtaining the external quantum efficiency of the cell for different angles of incidence and in both polarization directions. Finally, the effect of geometrical parameters on the short circuit current density of the device is investigated by considering different substrate shapes that are compatible with solar cell fabrication. Based on our simulations, among the investigated shapes, triangular gratings with a very sharp slope in one side, so called sawtooth gratings, are the most promising 1D gratings for optimal light trapping.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
    [CrossRef]
  2. N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
    [CrossRef]
  3. K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [CrossRef]
  4. O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
    [CrossRef]
  5. H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
    [CrossRef]
  6. T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
    [CrossRef]
  7. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
    [CrossRef] [PubMed]
  8. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]
  9. P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
    [CrossRef]
  10. 10. Z. Yu, A. Raman, and S. Fan, "Fundamental Limit of Nanophotonic Light-Trapping in Solar Cells," in Solar Energy Cells, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDSWB1.
  11. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005) (2010).
  12. G. Bao, Z. Chen, and H. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22(6), 1106–1114 (2005).
    [CrossRef]
  13. M. Nevière, and E. Popov, Light propagation in periodic media: differential theory and design (Marcel Dekker, Inc., 2003).
  14. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [CrossRef]
  15. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024 (1996).
    [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  17. M. Moharam and T. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [CrossRef]
  18. C. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
  19. A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
    [CrossRef]
  20. D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  21. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [CrossRef]
  22. N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
    [CrossRef]
  23. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005).
    [CrossRef]
  24. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [CrossRef] [PubMed]
  25. C. Heine and R. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  26. K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).
  27. T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
    [CrossRef]
  28. N. Chateau and J. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11(4), 1321–1331 (1994).
    [CrossRef]
  29. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings,” J. Opt. Soc. Am. A 12(5), 1043–1043 (1995).
    [CrossRef]
  30. V. Ferry, M. Verschuuren, H. Li, E. Verhagen, R. Walters, R. Schropp, H. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
    [CrossRef] [PubMed]
  31. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  32. A. Naqavi, V. Paeder, T. Scharf, K. Söderström, F. Haug, C. Ballif, and H. Herzig, “An RCWA Analysis of Solar Cell Back Reflectors: Comparison between Modelling and Experiment,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD) (Optical Society of America, 2010)
  33. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).
  34. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
    [CrossRef]
  35. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [CrossRef]
  36. S. Zanotto, M. Liscidini, and L. Andreani, “Efficiency Enhancement in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD), (Optical Society of America, 2010)
  37. S. Zanotto, M. Liscidini, and L. Andreani, “Absorption Enhancement and Light Trapping Regimes in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (Optical Society of America, 2010)

2010

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

V. Ferry, M. Verschuuren, H. Li, E. Verhagen, R. Walters, R. Schropp, H. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[CrossRef] [PubMed]

2009

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
[CrossRef] [PubMed]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

2008

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

2007

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

2006

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

2005

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005).
[CrossRef]

G. Bao, Z. Chen, and H. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22(6), 1106–1114 (2005).
[CrossRef]

2004

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

2001

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[CrossRef]

2000

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

1996

1995

1994

1983

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

1982

1979

C. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

1972

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Atwater, H.

Ballif, C.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[CrossRef] [PubMed]

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Bao, G.

Beckers, T.

Bittkau, K.

Bloch, A.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Brammer, T.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Bunte, E.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Carius, R.

Carniglia, C.

C. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

Chandezon, J.

Chateau, N.

Chen, Z.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Cornet, G.

Cubero, O.

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

Derkacs, D.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Drouard, E.

Duan, X.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Dupuis, M.

Eisele, C.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[CrossRef]

El Daif, O.

Escarré, J.

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

Fahr, S.

Fave, A.

Fejfar, A.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Feng, N.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Ferry, V.

Gaylord, T.

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

Haug, F.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[CrossRef] [PubMed]

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Haug, F. J.

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

Hayashi, Y.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Heine, C.

Hong, C.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Hugonin, J.

Iida, H.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Isabella, O.

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

Ito, A.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kaminski, A.

Karasawa, H.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Kimerling, L.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Knipp, D.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Kocka, J.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Krause, M.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Krc, J.

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

Lederer, F.

Lemiti, M.

Letartre, X.

Li, H.

Li, L.

Lim, S.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Llopis, F.

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005).
[CrossRef]

Mar, W.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Maystre, D.

Meier, J.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Michel, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Mishuku, T.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Moharam, M.

Moll, F.

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

Morf, R.

Morf, R. H.

Müller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Nebel, C.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[CrossRef]

Niquille, X.

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Park, Y.

Perregaux, S.

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

Polman, A.

Poruba, A.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Rech, B.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Reetz, W.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Remeš, Z.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Rockstuhl, C.

Schropp, R.

Seassal, C.

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Shah, A.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Sheng, P.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Shiba, N.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Söderström, K.

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

Söderström, T.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[CrossRef] [PubMed]

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Springer, J.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Špringer, J.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Stepleman, R.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Stutzmann, M.

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[CrossRef]

Terrazzoni-Daudrix, V.

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Tobias, I.

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005).
[CrossRef]

Torres, P.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Vanecek, M.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

Verhagen, E.

Verschuuren, M.

Viktorovitch, P.

Walters, R.

Wu, H.

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Yamanaka, M.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

Yu, E.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

Zeman, M.

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

Zeng, L.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[CrossRef]

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

IEEE Electron Device Lett.

H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983).
[CrossRef]

IEEE Trans. Electron. Dev.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
[CrossRef]

J. Appl. Phys.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[CrossRef]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

C. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).

Opt. Express

Phys. Rev. B

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Stat. Sol. A

O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
[CrossRef]

Prog. Photo. Res. Appl.

K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).

Prog. Photovolt. Res. Appl.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005).
[CrossRef]

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Thin Solid Films

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004).
[CrossRef]

Other

10. Z. Yu, A. Raman, and S. Fan, "Fundamental Limit of Nanophotonic Light-Trapping in Solar Cells," in Solar Energy Cells, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDSWB1.

A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005) (2010).

M. Nevière, and E. Popov, Light propagation in periodic media: differential theory and design (Marcel Dekker, Inc., 2003).

S. Zanotto, M. Liscidini, and L. Andreani, “Efficiency Enhancement in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD), (Optical Society of America, 2010)

S. Zanotto, M. Liscidini, and L. Andreani, “Absorption Enhancement and Light Trapping Regimes in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (Optical Society of America, 2010)

A. Naqavi, V. Paeder, T. Scharf, K. Söderström, F. Haug, C. Ballif, and H. Herzig, “An RCWA Analysis of Solar Cell Back Reflectors: Comparison between Modelling and Experiment,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD) (Optical Society of America, 2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SEM micrograph of the experimental sample. Thickness of layers is as follows. ZnO = 70nm, ITO = 50nm, i-Si = 180nm, p-Si = 15nm and n-Si = 20 nm. Period of the grating is 550 nm and its peak to valley amplitude is 150nm. The plot shows the approximate structure used in S-polarized simulations. Different colors correspond to different layers; silver, ZnO, n-Si, i-Si, p-Si and ITO are shown in black, white, yellow, cyan, green and blue respectively.

Fig. 2
Fig. 2

Comparison of EQE obtained from experiment and theory in both polarizations under normal incidence.

Fig. 3
Fig. 3

Angular variations of EQE vs wavelength. The red curves are theoretical results and the black curves are the experimental ones. (up): P polarization, (bottom): S polarization. The dashed line shows the angular variation of interference.

Fig. 4
Fig. 4

Normalized intensity profile for the experimental sample in P- (left) and S polarization (right) at 690 nm.

Fig. 5
Fig. 5

Four different types of back-reflector grating; a: sawtooth (experimental sample), b: perfect sinusoidal, c: perfect sawtooth and d: binary. Only one period of the back-reflector is shown and the parameters that change are exhibited in each case by arrows.

Fig. 6
Fig. 6

Short circuit current density variation vs period and depth of grating for P- (left) and S polarization (right). The metallic back-reflector is a sawtooth grating with thicknesses of layers defined in section 4.

Fig. 7
Fig. 7

Short circuit current density variation vs period and depth of grating for P- (left) and S polarization (right). The metallic back-reflector is a sinusoidal grating with thicknesses of layers defined in section 4.

Fig. 8
Fig. 8

Short circuit current density variation vs period and depth of grating for P- (left) and S polarization (right). The metallic back-reflector is a perfectly sawtooth grating with thicknesses of layers defined in section 4. Sawtooth edge is positioned at 0.1 of the period.

Fig. 9
Fig. 9

Short circuit current density variation vs period and depth of grating under unpolarized light for experimental sample (left) and sinusoidal grating (right).

Fig. 10
Fig. 10

Reflected power normalized to the incident power (%) for different grating depths. The geometry is similar to the experimental sample but scaled in depth.

Fig. 11
Fig. 11

EQE for two different grating back-reflectors mentioned in section 5.2 for both P (left) and S polarization (right). The absorption in the p-Si alone, and in p-Si and ITO layer is illustrated between 350 and 600 nm by dashed and solid lines respectively.

Fig. 12
Fig. 12

Short circuit current density variation vs period and depth of grating under unpolarized light for sawtooth grating with sawtooth edge positioned at 0.1 of the period (left) and for binary grating with duty cycle of 0.9 (right).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d d z [ E y ( z ) H x ( z ) ] = [ M ] [ E y ( z ) H x ( z ) ] .
[ E y ( z 1 ) H x ( z 1 ) ] = [ P ] exp { ( z 1 z 2 ) [ D ] } [ P ] 1 [ E y ( z 2 ) H x ( z 2 ) ] .
E Q E ( 1 η r η t ) . S = i S i ε i | E | 2 d S S = c e l l ε i | E | 2 d S .
E Q E max ( λ ) = exp { 4 π λ ( k p S i d p S i + k I T O d I T O ) } .

Metrics