Abstract

We present a prism-based spectrometer integrated into a multifocal, multiphoton microscope. The multifocal configuration facilitates interrogation of samples under different excitation conditions. Notably, the image plane of the microscope and the image plane of the spectrometer are coincident eliminating the need for an intermediate image plane containing an entrance slit. An EM-CCD detector provides sufficient gain for spectral interrogation of single-emitters. We employ this spectrometer to observe spectral shifts in the two-photon excitation fluorescence emission of single CdSe nanodots as a function of excitation polarization.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [CrossRef] [PubMed]
  2. G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).
  3. B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
    [CrossRef] [PubMed]
  4. L. Banyai, M. Lindberg, and S. W. Koch, “Two-photon absorption and third-order nonlinearities in GaAs quantum dots,” Opt. Lett. 13(3), 212–214 (1988).
    [CrossRef] [PubMed]
  5. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
    [CrossRef]
  6. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
    [CrossRef]
  7. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
    [CrossRef]
  8. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
    [CrossRef]
  9. M. T. E. Golay, “Multi-Slit Spectroscopy,” J. Opt. Soc. Am. A. 39(6), 437–444 (1949).
    [CrossRef]
  10. R. J. Bell, Introductory Fourier Transform Spectroscopy. London: Academic Press, 1972.
  11. J. E. Chamberlain, The principles of Interferometric Spectroscopy. New York:Wiley, 1979.
  12. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
    [CrossRef]
  13. Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
    [CrossRef]
  14. E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
    [CrossRef] [PubMed]
  15. E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
    [CrossRef] [PubMed]
  16. D. W. Warren, and J. A. Hackwell, “Compact prism spectrograph suitable for broadband spectral surveys with array detectors,” U.S. Patent No. 5127728 (1992).
  17. E. Chandler, E. Hoover, J. Field, K. Sheetz, W. Amir, R. Carriles, S. Ding, and J. Squier, “High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy,” Appl. Opt. 48(11), 2067–2077 (2009).
    [CrossRef] [PubMed]
  18. A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
    [CrossRef] [PubMed]
  19. K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
    [CrossRef] [PubMed]

2010 (1)

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

2005 (1)

A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
[CrossRef] [PubMed]

2003 (2)

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[CrossRef]

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

2000 (1)

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).

1997 (2)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[CrossRef] [PubMed]

1996 (3)

E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[CrossRef] [PubMed]

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

1994 (1)

H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
[CrossRef]

1993 (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
[CrossRef]

1988 (1)

1949 (1)

M. T. E. Golay, “Multi-Slit Spectroscopy,” J. Opt. Soc. Am. A. 39(6), 437–444 (1949).
[CrossRef]

Amir, W.

Ando, N.

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

Banyai, L.

Bar-Am, I.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Barnes, M. D.

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

Barstow, B.

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
[CrossRef]

Buckwald, R. A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Cabib, D.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Carriles, R.

Chandler, E.

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Day, R. N.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).

Ding, S.

Early, K. T.

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

Emrick, T.

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

Eychmuller, A.

A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
[CrossRef] [PubMed]

Farkas, D. L.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[CrossRef] [PubMed]

E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[CrossRef] [PubMed]

Field, J.

Gaponik, N.

A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
[CrossRef] [PubMed]

Garini, Y.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Golay, M. T. E.

M. T. E. Golay, “Multi-Slit Spectroscopy,” J. Opt. Soc. Am. A. 39(6), 437–444 (1949).
[CrossRef]

Gruner, S. M.

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Hoover, E.

Hoyt, C. C.

H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
[CrossRef]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Katzir, N.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Kim, C. U.

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

Klimov, V. I.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[CrossRef]

Koch, S. W.

Lavi, M.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Lindberg, M.

Lipson, S. G.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Macville, M.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Malik, Z.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Manoir, S.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Morris, H. R.

H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
[CrossRef]

Murray, C. B.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
[CrossRef]

Niu, W.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[CrossRef] [PubMed]

E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[CrossRef] [PubMed]

Norris, D. J.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
[CrossRef]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Patterson, G.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Petruska, M. A.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[CrossRef]

Piston, D.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).

Ried, T.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

Schaller, R. D.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[CrossRef]

Schröck, E.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Shavel, A.

A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
[CrossRef] [PubMed]

Sheetz, K.

Squier, J.

Sudeep, P. K.

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

Talmi, A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Treado, P. J.

H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
[CrossRef]

Wachman, E. S.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[CrossRef] [PubMed]

E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[CrossRef] [PubMed]

Wine, D.

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spec. (1)

H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994).
[CrossRef]

Bioimaging (1)

Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996).
[CrossRef]

Biophys. J. (1)

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[CrossRef] [PubMed]

ChemPhysChem (1)

A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005).
[CrossRef] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993).
[CrossRef]

J. Cell Sci. (1)

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).

J. Microsc. (1)

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

J. Opt. Soc. Am. A. (1)

M. T. E. Golay, “Multi-Slit Spectroscopy,” J. Opt. Soc. Am. A. 39(6), 437–444 (1949).
[CrossRef]

J. Phys. Chem. B (2)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[CrossRef]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[CrossRef]

Nano Lett. (1)

K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008).
[CrossRef] [PubMed]

Other (3)

R. J. Bell, Introductory Fourier Transform Spectroscopy. London: Academic Press, 1972.

J. E. Chamberlain, The principles of Interferometric Spectroscopy. New York:Wiley, 1979.

D. W. Warren, and J. A. Hackwell, “Compact prism spectrograph suitable for broadband spectral surveys with array detectors,” U.S. Patent No. 5127728 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A simplified representation of three types of spectrometers. (a) Specimen scanning spectrometers, where all colors are dispersed from a single point on the sample. (b) Wavelength scanning spectrometers, where one color at a time is selected from all points on the sample. (c) Prism-based spectrometer, in function similar to (a), but where the diffraction-limited spot size at the focus is the entrance slit.

Fig. 2
Fig. 2

Schematic diagram of the “optical multiplexer,” where the output is twice the repetition rate of the input, but with sequential orthogonally polarized pulses. HWP: half-wave plate; QWP: quarter-wave plate; BS: polarizing beam splitter; L1: collimation lens, 750 mm; L2: divergence adjustment lens, 700 mm; L3: 250 mm; L4: 500 mm; L5: tube lens, 170 mm; PD: photodiode (ThorLabs, DET210); SM: GSI Lumonics close-coupled scan mirrors.

Fig. 3
Fig. 3

Footprint of the imaging detection and prism-based spectrometer. When inserted, silver mirror M1 redirects signal light to the PMT. Prism is ½” SF-10 glass. L1, L2: 50 mm achromatic lenses (ThorLabs); P: 150 μm pinhole; L3: 200 mm achromatic lens (ThorLabs).

Fig. 4
Fig. 4

Neon gas lamp calibration setup with slit formed of two razors, one of which is mounted on a translation stage. L1 located 2f from both the slit and second tube lens inside the IX-71. L1: 250 mm, L5: tube lens from Fig. 1 (provided for spatial reference), 170 mm.

Fig. 5
Fig. 5

Lineout of the neon gas lamp spectrum obtained with the prism-based spectrometer with several peaks marked.

Fig. 6
Fig. 6

Spot size plot of 23 individual wavelengths at 9 nm intervals from 550 nm to 748 nm (legend lists wavelengths in μm). Inset: three wavelengths at the center of the 200 nm range, with Airy disk radius (dark circle) around the center wavelength, 631 nm.

Fig. 7
Fig. 7

Spectrum of drop-cast CdSe sample. The amplitude has been normalized to the peak value.

Fig. 8
Fig. 8

Wide-field TPEF image of CdSe sample, collected with PMT. Pixel dwell time of 10 ms. Amplitude is in photon counts. The circled dot is examined with multiple polarizations in Figs. 9 and 10. Brighter spots than the one circled, but of the same lateral extent, are multiple emitters aggregated within the focal volume.

Fig. 9
Fig. 9

Spectra at orthogonal polarizations from single CdSe quantum dots. The dashed line corresponds to the spectrum obtained from unrotated excitation polarization. The dotted line corresponds to the spectrum obtained from excitation polarization rotated by 90°. Amplitudes are normalized to the maximum of the unrotated spectrum.

Fig. 10
Fig. 10

Time-series of TPEF signal from a single emitter, as collected by the PMT. Complete amplitude modulation, as seen around 120 s, is indicative of a single quantum dot. Though the dot appears “dead” after 150 s of exposure, a later spectral measurement did observe TPEF.

Tables (1)

Tables Icon

Table 1 Airy disk radius, RMS spot size, and spectral resolution for selected wavelengths.

Metrics