Abstract

It is demonstrated that surface plasmon sensing can be performed in the shot-noise-limited regime to resolve index of refractive changes on the order of 10−10/√Hz at input powers of 1 mW. This improved resolution is achieved by using active electronic noise cancelling to suppress laser intensity noise and a wavelength that maximizes sensitivity to index of refraction changes occurring at an interface. The resolution of the system is experimentally demonstrated by measuring the refractive index change of air in response to pressure changes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  3. R. B. M. Schasfoort, and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (The Royal Society of Chemistry, 2008).
  4. B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  5. L. M. Zhang and D. Uttamchandani, “Optical Chemical Sensing Employing Surface-Plasmon Resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
    [CrossRef]
  6. A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
    [CrossRef]
  7. S. A. Shen, T. Liu, and J. H. Guo, “Optical phase-shift detection of surface plasmon resonance,” Appl. Opt. 37(10), 1747–1751 (1998).
    [CrossRef]
  8. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [CrossRef] [PubMed]
  9. I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
    [CrossRef]
  10. Z. L. Sun, Y. H. He, and J. H. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45(13), 3071–3076 (2006).
    [CrossRef] [PubMed]
  11. S. Y. Wu, H. P. Ho, W. C. Law, C. L. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  12. C. E. H. Berger and J. Greve, “Differential surface plasmon resonance immunosensing,” Sens. Actuators B Chem. 63, 103–108 (2000).
    [CrossRef]
  13. M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
    [CrossRef]
  14. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [CrossRef] [PubMed]
  15. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [CrossRef] [PubMed]
  16. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
    [CrossRef]
  17. K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
    [CrossRef]
  18. L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
  19. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  20. J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108, 462-493 (2008).
    [CrossRef] [PubMed]
  21. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36(25), 6539–6547 (1997).
    [CrossRef]
  22. T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
    [CrossRef] [PubMed]
  23. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  24. G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
    [CrossRef]
  25. C. Chou, H. T. Wu, Y. C. Huang, W. C. Kuo, and Y. L. Chen, “Characteristics of a paired surface plasma waves biosensor,” Opt. Express 14(10), 4307–4315 (2006).
    [CrossRef] [PubMed]
  26. Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
    [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36(16), 3785–3787 (1997).
    [CrossRef] [PubMed]
  29. Schott, http://www.schott.com/advanced_optics/us/abbe_datasheets/datasheet_all_us.pdf
  30. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36(4), 903–920 (1997).
    [CrossRef] [PubMed]
  31. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6(1), 51–59 (1967).
    [CrossRef] [PubMed]

2009

2008

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

2007

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).

2006

2004

2003

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2000

C. E. H. Berger and J. Greve, “Differential surface plasmon resonance immunosensing,” Sens. Actuators B Chem. 63, 103–108 (2000).
[CrossRef]

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[CrossRef] [PubMed]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

S. A. Shen, T. Liu, and J. H. Guo, “Optical phase-shift detection of surface plasmon resonance,” Appl. Opt. 37(10), 1747–1751 (1998).
[CrossRef]

1997

1995

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

1991

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

1988

K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
[CrossRef] [PubMed]

L. M. Zhang and D. Uttamchandani, “Optical Chemical Sensing Employing Surface-Plasmon Resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

1983

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1967

Baney, D. M.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Beloglazov, A. A.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Berger, C. E. H.

C. E. H. Berger and J. Greve, “Differential surface plasmon resonance immunosensing,” Sens. Actuators B Chem. 63, 103–108 (2000).
[CrossRef]

Boris, S.

L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).

Bradberry, G. W.

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

Bynum, M. A.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Cann, P. S.

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

Chang, Y. F.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Chen, Y. L.

Chou, C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

C. Chou, H. T. Wu, Y. C. Huang, W. C. Kuo, and Y. L. Chen, “Characteristics of a paired surface plasma waves biosensor,” Opt. Express 14(10), 4307–4315 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Davis, T. M.

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[CrossRef] [PubMed]

Ertel, J. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Fainman, Y.

L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gershon, P. D.

Greve, J.

C. E. H. Berger and J. Greve, “Differential surface plasmon resonance immunosensing,” Sens. Actuators B Chem. 63, 103–108 (2000).
[CrossRef]

Grigorenko, A. N.

Guo, J. H.

He, Y. H.

Ho, H. P.

Hobbs, P. C. D.

Homola, J.

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

Huang, Y. C.

Huibers, P. D. T.

Jefferson, S.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Johansen, K.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jory, M. J.

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Kawata, S.

Killeen, K. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Kochergin, V. E.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Kolomenskii, A. A.

Kong, S. K.

Kuo, W. C.

Law, W. C.

Li, Y. C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Liedberg, B.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lin, C. L.

Lipson, S. G.

Liu, T.

Lundstrom, I.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Matsubara, K.

Minami, S.

Nikitin, P. I.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Owens, J. C.

Pang, L.

Panga, L.

L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).

Patskovsky, S.

Persson, B.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

Ran, B.

Robotti, K. M.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Roos, H.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

Schuessler, H. A.

Shen, S. A.

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Stalberg, R.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

Stenberg, E.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

Su, L. C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Sun, Y. Z.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sun, Z. L.

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tetz, K. A.

Thrush, E. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Urbaniczky, C.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, “Optical Chemical Sensing Employing Surface-Plasmon Resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

White, I. M.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wilson, W. D.

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[CrossRef] [PubMed]

Wu, H. T.

Wu, S. Y.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, “Optical Chemical Sensing Employing Surface-Plasmon Resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Biochem.

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[CrossRef] [PubMed]

Anal. Chem.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

L. Panga, S. Boris, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).

Biosens. Bioelectron.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Chem. Rev.

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

Electron. Lett.

L. M. Zhang and D. Uttamchandani, “Optical Chemical Sensing Employing Surface-Plasmon Resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

J. Appl. Phys.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004).
[CrossRef]

J. Colloid Interface Sci.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[CrossRef]

Meas. Sci. Technol.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[CrossRef]

M. J. Jory, G. W. Bradberry, P. S. Cann, and J. R. Sambles, “A Surface-Plasmon-Based Optical Sensor Using Acoustooptics,” Meas. Sci. Technol. 6(8), 1193–1200 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Sens. Actuators

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

C. E. H. Berger and J. Greve, “Differential surface plasmon resonance immunosensing,” Sens. Actuators B Chem. 63, 103–108 (2000).
[CrossRef]

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127(2), 341–349 (2007).
[CrossRef]

Other

Schott, http://www.schott.com/advanced_optics/us/abbe_datasheets/datasheet_all_us.pdf

R. B. M. Schasfoort, and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (The Royal Society of Chemistry, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Angular SPR configuration in intensity interrogation approach. The SPR curve shift can be resolved only if the standard deviation of the noise is larger than the signal change to be measured.

Fig. 2
Fig. 2

Simulation of SPR sensitivity index of refraction changes in the bulk solution dR/dn|bulk (a) and adsorption layer (b). The simulation assumes an SF11 prism, water as buffer solution and index of refraction for the adsorption layer of 1.5. Similar conclusions are reached for index of refraction up to 1.6. The thickness of the gold film is optimized for maximum sensitivity. The dispersion of water and SF11 is taken into account. The gold layer thickness is optimized for each wavelength.

Fig. 3
Fig. 3

Circuit diagram of the electronic noise canceller.

Fig. 4
Fig. 4

Experimental result of noise cancelling performance of the electronic noise canceller. In this measurement the laser beam is split into a signal beam and a comparison beam using a wedged plate beam splitter. The signal beam power is adjusted to be half that of the comparison beam intensity with an attenuator. The intensities of two beams are measured by matched photodetectors. The spectrum of the linear output of the noise canceller as measured with dynamic signal analyzer (SRS785, Stanford Research Systems, Inc.) is shown. The spikes that appear approximately every 500 Hz come from the laser, and are suppressed by the noise canceller.

Fig. 5
Fig. 5

Surface plasmon resonator sensor experimental configuration. The reference and signal photodetectors form part of noise canceller shown in Fig. 3.

Fig. 6
Fig. 6

The reflectance and bulk sensitivity of angular SPR setup (with 44 nm Au film/ SF11 substrate) measurement of the change in the refractive index change in air. The sensitivity to bulk index change (circle) is directly measured by changing the refractive index of air by altering the pressure. The solid curve shows the sensitivity calculated from the measured angular reflectance curve.

Fig. 7
Fig. 7

Design of the air pressure cell.

Fig. 8
Fig. 8

Signal to noise ratio in 1Hz bandwidth. The refractive index is changed by applying different voltage to the piezo membrane which changes the volume of the air chamber.

Metrics