Abstract

We report on the long lifetime (>1 hour) of photonic crystal (PC) lasers under continuous-wave (CW) operation. For stable CW operation, we van-der-Waals-bonded our PC lasers to a novel submount structure consisting of MgF2-diamond bilayers on silicon substrate, which simultaneously ensures vertical mode confinement and efficient heat spread/dissipation. The combination of a Γ-point band-edge mode and butt-end fiber coupling yielded high CW fiber-coupled output power (~200 μW). The results demonstrate that the CW lifetime of PC lasers can be extended to the level for practical applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  2. Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
    [CrossRef]
  3. M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
    [CrossRef]
  4. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Braive, L. Le Gratiet, S. Guilet, G. Beaudoin, A. Taneau, S. Bouchoule, A. Levenson, and R. Raj, “Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer,” Opt. Express 15(12), 7551–7556 (2007).
    [CrossRef] [PubMed]
  5. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  6. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [CrossRef]
  7. Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
    [CrossRef]
  8. S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. Y. Kim, “High power and large alignment tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009).
    [CrossRef]
  9. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
    [CrossRef]
  10. M.-C. Liu, C.-C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure of magnesium fluoride films deposited by boat evaporation at 193 nm,” Appl. Opt. 45(28), 7319–7324 (2006).
    [CrossRef] [PubMed]
  11. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051 (2002).
    [CrossRef]
  12. W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
    [CrossRef]
  13. L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
    [CrossRef]
  14. D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
    [CrossRef]
  15. M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
    [CrossRef] [PubMed]

2010 (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

2009 (2)

S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. Y. Kim, “High power and large alignment tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009).
[CrossRef]

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

2007 (5)

2006 (1)

2002 (1)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051 (2002).
[CrossRef]

2000 (1)

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

1996 (1)

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

1990 (1)

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Aifer, E. H.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Allee, D. R.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

Baba, T.

Bagheri, M.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

Beaudoin, G.

Bewley, W. W.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Bouchoule, S.

Braive, R.

Cao, J.-R.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

Choi, S. J.

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

Choi, S.-J.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

Dapkus, P. D.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Droopad, R.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

Farrell, S.

Felix, C. L.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Florez, L. T.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Fujita, M.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051 (2002).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Guilet, S.

Han, I. Y.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Harbison, J. P.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Hwang, D. M.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Hwang, J. K.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Hwang, K.

Jang, D. H.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Jeon, H.

S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. Y. Kim, “High power and large alignment tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009).
[CrossRef]

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kaneko, M.

Karle, T. J.

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kim, H. J.

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

Kim, H. Y.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S.

S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. Y. Kim, “High power and large alignment tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009).
[CrossRef]

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

Kita, S.

Kuang, W.

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

Le Gratiet, L.

Lee, C.-C.

Lee, H.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Lee, J.

Lee, K.-H.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Levenson, A.

Liu, M.-C.

Lu, L.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

Maracas, G. N.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

Mathine, D. L.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Meyer, J. R.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Mock, A.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

Monnier, P.

Moon, C.

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

Nakahira, K.

Nejad, H.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

O’Brien, J.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

O’Brien, J. D.

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Olafsen, L. J.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Park, H. K.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Park, Y.

S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. Y. Kim, “High power and large alignment tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009).
[CrossRef]

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

Raineri, F.

Raj, R.

Ryu, H. Y.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Sagnes, I.

Sato, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Shih, M. H.

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
[CrossRef] [PubMed]

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Song, D. S.

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

Stokes, D. W.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Suh, N.-K.

Takano, Y.

Taneau, A.

Vecchi, G.

Vurgaftman, I.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

Yacomotti, A.

Yang, M. J.

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051 (2002).
[CrossRef]

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical‐cavity surface‐emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69(4), 463 (1996).
[CrossRef]

M. H. Shih, M. Bagheri, A. Mock, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. Kuang, “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett. 90(12), 121116 (2007).
[CrossRef]

Y. Park, S. Kim, C. Moon, H. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90(17), 171115 (2007).
[CrossRef]

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. W. Bewley, C. L. Felix, E. H. Aifer, D. W. Stokes, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, M. J. Yang, and H. Lee, “Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers,” IEEE J. Quantum Electron. 35(11), 1597–1601 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. O’Brien, and P. D. Dapkus, “Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity lasers,” IEEE Photon. Technol. Lett. 21(17), 1166–1168 (2009).
[CrossRef]

Y. H. Lee, D. H. Jang, H. K. Park, I. Y. Han, D. S. Song, H. Y. Ryu, and J. K. Hwang, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12(10), 1295–1297 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Opt. Express (3)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photonic band structure of square-lattice air-hole BEL bonded to MgF2, calculated by three-dimensional plane-wave expansion method (insets: SEM image of fabricated BEL device and magnetic field distribution profile of the Γ1 band-edge mode). (b) Schematic cross-sectional view of BEL with butt-end fiber tip for simultaneous optical pumping and output coupling.

Fig. 2
Fig. 2

(a) Optical input-output relationship under CW operation and optical spectra below and above laser threshold. (b) 3D plot of CW emission spectra as a function of operation time (insets: Nomarski optical microscope images for CW BEL device before and after failure).

Fig. 3
Fig. 3

Simulated heat-flux distributions of (a), (b) CW laser structure (InGaAsP/MgF2/diamond/Si) and (c), (d) laser structure bonded to sapphire substrate (InGaAsP/Al2O3). (a) and (c) indicate the lateral components (Φ//), and (b) and (d) indicate the vertical components (Φ) of heat flux. The actual simulations were performed only for one quarter of the space while symmetric boundary conditions were applied to the remaining space. In the figure, xz and yz planes represent symmetric boundaries. The dashed lines in contour plots correspond to the heated areas in the schematic device diagrams.

Fig. 4
Fig. 4

Measured data to determine thermal resistance of CW BEL structure. (a) Lasing wavelength as a function of heat sink temperature measured at low (1%) duty cycle. (b) Lasing wavelength versus absorbed pump power under CW operation.

Metrics