Abstract

This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 – 80%, the surface coverage of the dye molecules were reduced, thereby decreasing the probability of the re-emitted light encountering another dye molecule and the probability of reabsorption. Two types of fluorescent dyes with different quantum yields were used to examine the effects of patterning on LSC performance. The effect of various dimension and geometry of the patterns on the efficiency and edge emission of LSC are presented and analyzed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kurtz, Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (National Renewable Energy Labortatory, 2009).
    [PubMed]
  2. J. S. Batchelder, A. H. Zewaii, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979).
    [CrossRef] [PubMed]
  3. J. S. Batchelder, A. H. Zewaii, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [CrossRef] [PubMed]
  4. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
    [CrossRef] [PubMed]
  5. A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
    [CrossRef]
  6. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Buchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donega, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators-a review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [CrossRef] [PubMed]
  7. W. H. Weber, and J. Lambe, “Luminescent greenhouse collector for solar-radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [CrossRef] [PubMed]
  8. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
    [CrossRef]
  9. R. W. Olsen, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934–2940 (1981).
    [CrossRef]
  10. R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).
  11. B. Rowan, L. Wilson, and B. S. Richards, “Visible and near-infrared emitting lanthanids complexes for luminescent solar concentrators,” in 24th European Photovoltaic Solar Energy Conference (Humburg, Germany, 2009), pp. 346–349.
  12. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
    [CrossRef]
  13. S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
    [CrossRef]
  14. A. M. Taleb, “Self absorption treatment for luminescent solar concentrators,” Renew. Energy 26, 137–142 (2002).
    [CrossRef]
  15. L. R. Wilson, and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212–220 (2009).
    [CrossRef] [PubMed]
  16. M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
    [CrossRef]
  17. P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
    [CrossRef]
  18. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
    [CrossRef]
  19. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

2010

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

2009

L. R. Wilson, and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212–220 (2009).
[CrossRef] [PubMed]

M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

2008

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Buchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donega, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators-a review of recent results,” Opt. Express 16, 21773–21792 (2008).
[CrossRef] [PubMed]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
[CrossRef]

2007

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

2004

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
[CrossRef]

2002

A. M. Taleb, “Self absorption treatment for luminescent solar concentrators,” Renew. Energy 26, 137–142 (2002).
[CrossRef]

1981

1979

1977

A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

1976

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

Barnham, K. W. J.

Bastiaansen, C. W. M.

M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Batchelder, J. S.

Bende, E. E.

Bose, R.

Broer, D. J.

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Buchtemann, A.

Budel, T.

Burgers, A. R.

Buxton, B. F.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
[CrossRef]

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Chatten, A. J.

Cole, T.

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

Debije, M. G.

M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Donega, C. D. M.

Doran, J.

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
[CrossRef]

Ekins-Daukes, N. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
[CrossRef]

Farkas, E.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Farkas, Z.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Farrell, D. J.

Fayer, M. D.

Gallapher, S. J.

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Goetzberger, A.

A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

Greubel, W.

A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

Hilbert, M.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Kaiser, A.

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Kastelijn, M. J.

M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
[CrossRef]

Kennedy, M.

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
[CrossRef]

Ketskemety, I.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Koole, R.

Lambe, J.

Loring, R. F.

Malik, M. A.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
[CrossRef]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

McCormack, S. J.

Meijerink, A.

Meyer, A.

Meyer, T.

Norton, B.

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

Olsen, R. W.

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
[CrossRef]

Quilitz, J.

Richards, B. S.

Rowan, B. C.

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Slooff, L. H.

Soti, R.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Taleb, A. M.

A. M. Taleb, “Self absorption treatment for luminescent solar concentrators,” Renew. Energy 26, 137–142 (2002).
[CrossRef]

van Sark, W. G. J. H. M.

Vanmaekelbergh, D.

Verbunt, P. P. C.

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Weber, W. H.

Wilson, L. R.

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Zewaii, A. H.

Adv. Funct. Mater.

P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Appl. Phys. Lett.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

J. Appl. Phys.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

J. Lumin.

R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).

Opt. Express

Opt. Mater.

M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009).
[CrossRef]

Phys. Status Solidi

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL).
[CrossRef]

Renew. Energy

A. M. Taleb, “Self absorption treatment for luminescent solar concentrators,” Renew. Energy 26, 137–142 (2002).
[CrossRef]

Science

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef] [PubMed]

Semiconductors

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004).
[CrossRef]

Sol. Energy

S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007).
[CrossRef]

Other

S. Kurtz, Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (National Renewable Energy Labortatory, 2009).
[PubMed]

B. Rowan, L. Wilson, and B. S. Richards, “Visible and near-infrared emitting lanthanids complexes for luminescent solar concentrators,” in 24th European Photovoltaic Solar Energy Conference (Humburg, Germany, 2009), pp. 346–349.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Light incident on a uniformly coated LSC is absorbed and re-emitted at a longer wavelength by a dye molecule. Part of this re-emitted light propagates through the substrate in the waveguiding mode (solid light rays), and has a high probability of being reabsorbed by another dye molecule. Each time re-absorption occurs, there is a potential loss of photons due to < 100% quantum yield of the dyes and the redirecting of light. Hence the intensity of the re-emitted light from a reabsorption event decreases (dotted light rays); b) The dye layer is patterned into line structures which extend into the plane of the paper. Light re-emitted into the waveguide mode has significantly lower probability of encountering dye molecules, thereby minimizing reabsorption and energy losses as light travels across the waveguide.

Fig. 2
Fig. 2

Representative absorption (solid line) and edge emission (dotted line) spectra of 0.5% wt. fluorescent dye K160 (green) and Lumogen Red 305 (red) doped glass waveguides.

Fig. 3
Fig. 3

(a) Calculated relative efficiency (sum of integrated emission from all 4 edges divided by calculated total energy absorbed by the fluorescent dye molecules from 350–750 nm) and (b) measured integrated total edge emission of LSC on PMMA and glass substrates as a function of surface area covered by line structures containing 0.5% K160 dye molecules.

Fig. 4
Fig. 4

Measured edge emission spectra of K160 doped 10 line pattern LSC system with varying line widths to cover 100% to 20% of the substrate surface. The position of edge emission peaks are increasingly red-shifted (as indicated by the vertical line) as fluorescent dye coverage increases from 20% to 100%

Fig. 5
Fig. 5

a) Relative efficiency (defined as total integrated edge emission divided by the calculated energy absorbed by dye molecules from 350–750 nm) and b) total edge emission of patterned waveguides composed of equally spaced 5 and 10 lines doped with 0.5% K160 as a function of dye pattern coverage; c) relative efficiency of line and square patterned waveguides doped with 0.5% K160 and 0.5% Red305.

Tables (1)

Tables Icon

Table 1 Measurement results of different fluorescent dyes and patterned waveguides

Metrics