Abstract

A Polymeric mirror from 1D photonic crystal exhibiting full specular reflection is applied on the exterior of the counter electrode of a dye-sensitized solar cells (DSSCs). Reflection of exiting light from the cell allows for the reuse of the light and thereby significantly increases the efficiency of the DSSCs (from 8.07% to 8.85%). Furthermore, it is also found to be effective even with incorporation of an internal scattering layer, which is widely used within a TiO2 anode layer for enhancing light trapping in DSSCs (from 9.17% to 9.53%).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  2. X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
    [CrossRef]
  3. M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
    [CrossRef]
  4. Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
    [CrossRef]
  5. Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
    [CrossRef]
  6. K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
    [CrossRef] [PubMed]
  7. A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
    [CrossRef]
  8. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
    [CrossRef]
  9. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
    [CrossRef]
  10. Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
    [CrossRef]
  11. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
    [CrossRef] [PubMed]
  12. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
    [CrossRef] [PubMed]
  13. M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
    [CrossRef]
  14. K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
    [CrossRef] [PubMed]
  15. J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
    [CrossRef]
  16. B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
    [CrossRef] [PubMed]
  17. Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
    [CrossRef]
  18. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
    [CrossRef] [PubMed]

2010 (3)

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
[CrossRef]

2008 (5)

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[CrossRef]

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

2007 (1)

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

2006 (1)

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

2002 (2)

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

2000 (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

1991 (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Arakawa, H.

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

Arpin, K. A.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Baca, A. J.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Bhattacharya, B.

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

Boschloo, G.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Braun, P. V.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Calvo, M. E.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Caulier, O.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Chen, L.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Chu, Z.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Colodrero, S.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Fan, X.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Fink, Y.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Geng, J.

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Grätzel, M.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Hagfeldt, A.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Häggman, L.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Hamann, T. W.

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

Hara, K.

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

Hart, S. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Hupp, J. T.

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

Ikegami, M.

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Janecek, M.

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[CrossRef]

Jiang, L.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Joannopoulos, J. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Johnson, H. T.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Jun, Y.

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

Jung, H. T.

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

Kang, M. G.

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

Kawaraya, M.

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Kim, D. W.

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

Lee, J. Y.

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

Lewis, J. A.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Li, D. M.

Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
[CrossRef]

López-Alcaraz, F. J.

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Lozano, G.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Luo, Y. H.

Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
[CrossRef]

Martinson, A. B. F.

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

Maskaly, G. R.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Meng, Q. B.

Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
[CrossRef]

Miguez, H.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Mihi, A.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Miyasaka, T.

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Moon, J. H.

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

Moses, W. W.

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[CrossRef]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Ocaña, M.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Park, J. H.

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

Park, J. K.

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

Pellin, M. J.

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

Prideaux, P. H.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Rogers, J. A.

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

Sayama, K.

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

Shin, K.

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

Sohn, D.

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

Son, J. H.

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

Song, Y.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Suzuki, J.

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Tachibana, Y.

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

Temelkuran, B.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Teshima, K.

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Wang, F.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Wang, J.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Zhai, J.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Zhang, C.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Zhao, Y.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Zhu, D.

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

Zou, D.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

ACS Appl Mater Interfaces (1)

K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010).
[CrossRef] [PubMed]

Adv. Mater. (3)

Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009).
[CrossRef]

K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010).
[CrossRef] [PubMed]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007).
[CrossRef]

Chem. Mater. (1)

Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002).
[CrossRef]

Chemistry (1)

A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci. (1)

M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008).
[CrossRef]

J. Mater. Chem. (1)

Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008).
[CrossRef]

J. Photochem. Photobiol. A (1)

Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008).
[CrossRef]

J. Phys. Chem. C (2)

J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008).
[CrossRef]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Langmuir (1)

B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009).
[CrossRef] [PubMed]

Nature (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Science (2)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram showing the concept of highly reflectance film supported DSSC. (a) DSSC configuration used for reference cell. (b) Modification of reference by applying polymeric reflective film at the exterior of counter electrode. FTO is fluorine-doped tin oxide.

Fig. 2
Fig. 2

Reflectance spectra of (a) polymeric mirror and (b) white diffuse reflection film in the range of visible wavelength region. Angle of incidence is 7° where normal incidence is set to 0° and the total and diffuse reflectance were measured with detector varying the angle. Specular reflectance is calculated by the difference of total and diffuse reflectance.

Fig. 3
Fig. 3

J-V characteristics of a cell for a DSSC cell (a) without and (b) with scattering layers. Each figure contain inset figure exhibiting IPCE versus wavelength (λ). Inset figure exhibit IPCE versus wavelength. Ref, #1, and #2 in the figure represent reference cell, polymeric mirror attached onto reference cell and white diffuse reflection film attached onto reference cell.

Fig. 4
Fig. 4

Power coversion efficiency of DSSC with varying angle of the incident light.

Tables (1)

Tables Icon

Table 1 Photocurrent-voltage characteristics of DSSC

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = [ 1 ( n l o w / n h i g h ) 2 m 1 ( n l o w / n h i g h ) 2 m ] 2

Metrics