Abstract

This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
    [CrossRef]
  2. A. Rabl, in Active Solar Collectors and Their Applications (Oxford University Press, 1985).
  3. C. Domínguez, I. Anton, and G. Sala, “Solar Simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894-14901 (2008).
    [CrossRef] [PubMed]
  4. C. Domínguez, S. Askins I.Antón, G.Sala,”Indoor Characterization of CPV Modules Using the Helios 3298 Solar Simulator” in Proceedings 24rd EPVSEC,Hamburg, 20–25 Sept. 2009.
  5. A. Parretta, A. Antonini, E. Milan, M. Stefancich, G. Martinelli, and M. Armani, “Optical efficiency of solar concentrators by a reverse optical path method,” Opt. Lett. 33(18), 2044–2046 (2008).
    [CrossRef] [PubMed]
  6. J. L. Álvarez, J. C. González, P. Benítez, and J. C. Miñano, “Experimental measurements of RXI concentrator for photovoltaic applications”, in Proceedings of 2nd World PVSEC (Viena, Austria, 1998) pp. 2233–36.
  7. V. D. Rumyantsev and M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 1-4 (1992).
  8. C. G. Zimmermann, “Utilizing lateral current spreading in multijunction solar cells: An alternative approach to detecting mechanical defects,” J. Appl. Phys. 100(2), 023714 (2006).
    [CrossRef]
  9. IEC 62108 ed.1.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval.

2008 (2)

2006 (1)

C. G. Zimmermann, “Utilizing lateral current spreading in multijunction solar cells: An alternative approach to detecting mechanical defects,” J. Appl. Phys. 100(2), 023714 (2006).
[CrossRef]

2003 (1)

I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
[CrossRef]

1992 (1)

V. D. Rumyantsev and M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 1-4 (1992).

Anton, I.

Antón, I.

I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
[CrossRef]

Antonini, A.

Armani, M.

Domínguez, C.

Martinelli, G.

Milan, E.

Pachón, D.

I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
[CrossRef]

Parretta, A.

Rumyantsev, V. D.

V. D. Rumyantsev and M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 1-4 (1992).

Sala, G.

C. Domínguez, I. Anton, and G. Sala, “Solar Simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894-14901 (2008).
[CrossRef] [PubMed]

I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
[CrossRef]

Shvarts, M. Z.

V. D. Rumyantsev and M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 1-4 (1992).

Stefancich, M.

Zimmermann, C. G.

C. G. Zimmermann, “Utilizing lateral current spreading in multijunction solar cells: An alternative approach to detecting mechanical defects,” J. Appl. Phys. 100(2), 023714 (2006).
[CrossRef]

Geliotekhnika (1)

V. D. Rumyantsev and M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 1-4 (1992).

J. Appl. Phys. (1)

C. G. Zimmermann, “Utilizing lateral current spreading in multijunction solar cells: An alternative approach to detecting mechanical defects,” J. Appl. Phys. 100(2), 023714 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Prog. Photovolt. Res. Appl. (1)

I. Antón, D. Pachón, and G. Sala, “Characterization of Optical Collectors for Concentration Photovoltaic Applications,” Prog. Photovolt. Res. Appl. 11, 387–405 (2003).
[CrossRef]

Other (4)

A. Rabl, in Active Solar Collectors and Their Applications (Oxford University Press, 1985).

C. Domínguez, S. Askins I.Antón, G.Sala,”Indoor Characterization of CPV Modules Using the Helios 3298 Solar Simulator” in Proceedings 24rd EPVSEC,Hamburg, 20–25 Sept. 2009.

J. L. Álvarez, J. C. González, P. Benítez, and J. C. Miñano, “Experimental measurements of RXI concentrator for photovoltaic applications”, in Proceedings of 2nd World PVSEC (Viena, Austria, 1998) pp. 2233–36.

IEC 62108 ed.1.0 Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The one dimensional angular transmission function TSun(α) is measured when the Sun follows a path contained in a meridian plane of the CPV optical system. Each one-dimensional angular transmission curve TSun(α) for a given light source path corresponds to an intersection of a plane with the two-dimensional angular transmission TSun(ϕ,θ) .

Fig. 2
Fig. 2

The angular transmission function TSimulator(α) is calculated using a solar simulator. Pmp values are recorded for different positions of the module when varying the angle α.

Fig. 3
Fig. 3

Measurement diagram of the luminescence inverse method to calculate the two-dimensional angular transmission curve T(ϕ,θ) of a CPV module by electro-luminescence. The projected image is related to the impulse-response transmission curve H(ϕ,θ) of the CPV system.

Fig. 4
Fig. 4

The angular transmission function is defined as the convolution of the impulse response transmission function of the CPV module and a given light source distribution.

Fig. 5
Fig. 5

Lens-cell unit angular transmission curve: solar simulator and the luminescence inverse method (680 and 890 nm).

Fig. 6
Fig. 6

Lens-cell unit angular transmission curve: real Sun and the luminescence inverse method (680 and 890 nm).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( α ) = T( φ 1 , θ )
T( φ , θ )=H( φ , θ ) S( φ , θ
T ( φ , θ ) Sun = H ( φ , θ  S( φ , θ ) Sun T ( α ) Sun =T ( φ 1 , θ ) Sun
T ( φ , θ ) Simulator = H ( φ , θ  S( φ , θ ) Simulator T ( α ) Simulator =T ( φ 1 , θ ) Simulator
H scattered ( φ , θ )=H( φ , θ ) H M i r r o r ( φ , θ )   

Metrics