Abstract

Vertically-aligned silicon nanowires (SiNWs) that demonstrate reductions of phonon thermal conductivities are ideal components for thermoelectric devices. In this paper, we present large-area silicon nanowire arrays in various lengths using a silver-induced, electroless-etching method that is applicable to both n- and p-type substrates. The measured thermal conductivities of nanowire composites are significantly reduced by up to 43%, compared to that of bulk silicon. Detailed calculations based on the series thermal resistance and phonon radiative transfer models confirm the reduction of thermal conductivity not only due to the increased air fraction, but also the nanowire size effect, suggesting the soundness of employing bulk silicon nanowire composites as efficient thermoelectric materials.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
    [CrossRef] [PubMed]
  2. G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York (2001).
  3. G. A. Slack, CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, (1995).
  4. R. Venkatasubramanian, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 175–201 (2001).
  5. G. Chen, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 203–259 (2001).
  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
    [CrossRef] [PubMed]
  7. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
    [CrossRef]
  8. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
    [CrossRef] [PubMed]
  9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
    [CrossRef] [PubMed]
  10. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
    [CrossRef]
  11. K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
    [CrossRef]
  12. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  13. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
    [CrossRef]
  14. D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
    [CrossRef]
  15. S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
    [CrossRef]
  16. J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
  17. H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
    [CrossRef]
  18. Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
    [CrossRef]
  19. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
    [CrossRef]
  20. K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
    [CrossRef]
  21. S. Sihn, and K. Ajit, Roy, “Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation,” COMSOL Conference (2009).
  22. B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
    [CrossRef]
  23. G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
    [CrossRef]
  24. J. M. Ziman, “Electrons and Phonons,” Oxford University Press, London, (1985).
  25. D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
    [CrossRef]
  26. H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
    [CrossRef] [PubMed]

2010

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

2008

H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
[CrossRef] [PubMed]

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

2007

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

2006

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

2005

Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[CrossRef]

2003

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

2002

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

2001

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[CrossRef]

1999

F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

1998

G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[CrossRef]

1997

G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[CrossRef]

S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[CrossRef]

1990

D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[CrossRef]

1961

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Arashi, T.

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

Boukai, A. I.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Bunimovich, Y.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Cahill, D. G.

S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[CrossRef]

D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[CrossRef]

Cao, J.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Cao, Z.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, G.

B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[CrossRef]

G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[CrossRef]

G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[CrossRef]

Chen, H. Y.

Chen, J. S.

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, R.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Chen, W. C.

Chen, Z.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Colpitts, T.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Delgado, R. D.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

DiSalvo, F. J.

F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

Fan, H.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Feng, J. Y.

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

Gao, S. P.

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Garnett, E. C.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Goddard, W. A.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Gwo, S.

He, Y.

Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[CrossRef]

Heath, J. R.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Hochbaum, A. I.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hu, P.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Hu, X. J.

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Joulain, K.

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

Lacroix, D.

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, S. M.

S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[CrossRef]

Lemonnier, D.

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

Liang, W.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Lin, H. W.

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Majumdar, A.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Makino, D.

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

Miyazaki, K.

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

Mo, S.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Najarian, M.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Neagu, M.

G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[CrossRef]

Ng, K. M.

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

O’Quinn, B.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Peng, K. Q.

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Siivola, E.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Sun, L. X.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Tahir-Kheli, J.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Terris, D.

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

Tsukamoto, H.

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

Venkatasubramanian, R.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[CrossRef]

Wang, H.

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

Wu, C. Y.

Yan, Y.

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

Yan, Y. J.

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Yang, B.

B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[CrossRef]

Yang, D. W.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Yang, P.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Yu, F.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

Yu, J.-K.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Zeng, J. L.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Zhang, L.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Zhu, J.

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Adv. Funct. Mater.

K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[CrossRef]

Adv. Mater.

K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Appl. Phys. Lett.

S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[CrossRef]

G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[CrossRef]

Chem. Eng. Sci.

H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[CrossRef]

IEEE Trans. Compon. Packag. Tech.

K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[CrossRef]

Int. J. Thermophys.

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[CrossRef]

J. Appl. Phys.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

J. Phys.: Conf. Ser.

D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[CrossRef]

J. Therm. Anal. Calorim.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).

Microscale Thermophys. Eng.

B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[CrossRef]

Nat. Nanotechnol.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nature

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[CrossRef]

Rev. Sci. Instrum.

D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[CrossRef]

Science

F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

Thermochim. Acta

Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[CrossRef]

Other

G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York (2001).

G. A. Slack, CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, (1995).

R. Venkatasubramanian, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 175–201 (2001).

G. Chen, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 203–259 (2001).

S. Sihn, and K. Ajit, Roy, “Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation,” COMSOL Conference (2009).

J. M. Ziman, “Electrons and Phonons,” Oxford University Press, London, (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of a proposed thermoelectric device using n- and p-type silicon nanowire arrays fabricated on silicon substrates. The inset shows a scanning electron micrograph of a fabricated silicon nanowire composite.

Fig. 2
Fig. 2

Scanning electron micrographs of fabricated silicon nanowires (SiNWs): (a) a tilted 45° top view of the 35-μm-long SiNWs, (b) a tilted 45° top view of the 215-μm-long SiNWs, and (c) and (d) the cross-sectional images of (a) and (b), respectively, where the SiNWs are very uniform in length. (e) The magnified image of (c), where the widths of individual nanowires are on the order of 200 nm. (f) Photograph of SiNW arrays fabricated on one-quarter of a 6-inch silicon wafer.

Fig. 3
Fig. 3

The schematic of the experimental setup using a Hot-Disk 2500 thermal-constant analyzer based on a transient plane source method.

Fig. 4
Fig. 4

(a) The schematic diagrams of heat transfer at boundary with a specular reflected boundary condition and (b) a diffuse boundary condition. (c) The simulation unit cell comprises 25 nanowires with a length of 35 ± 5 μm on the silicon substrate. The total propagation length is 650 μm. (d) The calculated temperature gradients near the nanowire/substrate interface for 35-μm-long nanowire composites with and without the etching length fluctuations.

Fig. 5
Fig. 5

The effective thermal conductivities of silicon nanowire composites including the substrate are calculated as a function of the nanowire length using both the series thermal resistance model (blue lines/symbols) and the EPRT model (red lines/symbols): (a) for air ratios of 30%, 40%, and 50%, and (b) for different nanowire widths of 315 nm (dashed line), 210 nm (solid line) and 105nm (dash-dotted line), where the air ratio is fixed at 40%. In both plots, the measured thermal conductivities are shown in black squares with length variations as error bars.

Tables (1)

Tables Icon

Table 1 Measured Thermal Conductivities of Silicon Nanowire Composites

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ p 4 κ t ,
d 1 + d 2 k e f f A 1 = d 1 k 1 A 1 + d 2 k 2 A 2 ,
f t + v f = ( f t ) s c a t ,
( f t ) s c a t = f 0 f τ ,
I ( θ , ϕ , x , y , t ) = 1 4 π v f ω D ( ω ) ,
cos θ I x + sin θ cos ϕ I y = 1 4 π 0 2 π 0 π I ( θ , ϕ , x , y ) sin θ d θ d ϕ I 0 Λ ,
x = 0 I + = I ( T H ) ,
x = L I = I ( T L ) ,
T ( x , y ) = 4 π I ( x , y ) C | v | ,
q = 1 L 0 L q x ( x , y ) d y ,
k = q L T H T L .
ρ = exp ( 16 π 3 δ 2 λ 2 ) ,

Metrics