H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
[Crossref]
[PubMed]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[Crossref]
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[Crossref]
F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[Crossref]
[PubMed]
G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[Crossref]
G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[Crossref]
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[Crossref]
D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[Crossref]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[Crossref]
D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[Crossref]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[Crossref]
G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[Crossref]
G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[Crossref]
[PubMed]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[Crossref]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[Crossref]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[Crossref]
H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[Crossref]
H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[Crossref]
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003).
[Crossref]
K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[Crossref]
S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997).
[Crossref]
G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997).
[Crossref]
H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010).
[Crossref]
K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006).
[Crossref]
S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006).
[Crossref]
W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[Crossref]
D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007).
[Crossref]
J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001).
[Crossref]
Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[Crossref]
[PubMed]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[Crossref]
[PubMed]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref]
[PubMed]
G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998).
[Crossref]
D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990).
[Crossref]
F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999).
[Crossref]
[PubMed]
Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005).
[Crossref]
G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York (2001).
G. A. Slack, CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, (1995).
R. Venkatasubramanian, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 175–201 (2001).
G. Chen, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 203–259 (2001).
S. Sihn, and K. Ajit, Roy, “Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation,” COMSOL Conference (2009).
J. M. Ziman, “Electrons and Phonons,” Oxford University Press, London, (1985).