Abstract

We report on large-area pentacene / C60 organic solar cells in which indium-tin-oxide (ITO) is replaced with a conductive polymer electrode and a 5 μm-thick metal grid is used to reduce resistive power losses. The performance of cells with the polymer electrode was compared with that of pentacene / C60 devices using ITO as the transparent electrode. For large-area devices (7.3 cm2) on glass substrates with an integrated metal grid, the performance of a device with the polymer electrode is comparable to that of a device with an ITO electrode combined with a grid.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environmental Science 2(3), 251–261 (2009).
    [CrossRef]
  2. US Geological Survey, “ http://minerals.usgs.gov/minerals/pubs/commodity/indium/
  3. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
    [CrossRef]
  4. R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
    [CrossRef]
  5. W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
    [CrossRef]
  6. Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
    [CrossRef]
  7. G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
    [CrossRef]
  8. J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
    [CrossRef]
  9. B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
    [CrossRef]
  10. J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
    [CrossRef]
  11. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  12. K. Tvingstedt and O. Inganäs, “Electrode Grids for ITO Free Organic Photovoltaic Devices,” Adv. Mater. 19(19), 2893–2897 (2007).
    [CrossRef]
  13. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).
  14. J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
    [CrossRef]
  15. S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
    [CrossRef]
  16. B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
    [CrossRef]
  17. F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron. 10(5), 761–768 (2009).
    [CrossRef]
  18. S. Choi, W. J. Potscavage, Jr., and B. Kippelen, “Area-scaling of Organic Solar Cells and Integrated Modules,” in Organic Materials and Devices for Sustainable Energy Systems, J. Xue, ed. (Mat. Res. Soc. Symp. Proc., Boston, MA, USA, 2009), p. S06.
  19. S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
    [CrossRef]
  20. S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
    [CrossRef]
  21. F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
    [CrossRef]
  22. A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
    [CrossRef]
  23. Solarmer Energy, “ http://www.solarmer.com/ ” (2010)

2010

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

2009

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron. 10(5), 761–768 (2009).
[CrossRef]

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environmental Science 2(3), 251–261 (2009).
[CrossRef]

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
[CrossRef]

2008

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
[CrossRef]

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

2007

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

K. Tvingstedt and O. Inganäs, “Electrode Grids for ITO Free Organic Photovoltaic Devices,” Adv. Mater. 19(19), 2893–2897 (2007).
[CrossRef]

2005

G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
[CrossRef]

2004

S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
[CrossRef]

2003

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

1999

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

1974

A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
[CrossRef]

An, K.-H.

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Barrau, S.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Bernède, J. C.

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

Berredjem, Y.

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

Bredas, J.-L.

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environmental Science 2(3), 251–261 (2009).
[CrossRef]

Cattin, L.

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

Choi, S.

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

Connor, S. T.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Cui, Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Domercq, B.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
[CrossRef]

Forsythe, E. W.

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

Gao, Y.

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

Garito, A. F.

A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
[CrossRef]

Glatthaar, M.

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Gombert, A.

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Guo, L. J.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

Han, S.-H.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Hau, S. K.

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

Haughn, C.

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Heeger, A. J.

A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
[CrossRef]

Henseler, D.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Heuser, K.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Hinsch, A.

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Inganas, O.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Inganäs, O.

K. Tvingstedt and O. Inganäs, “Electrode Grids for ITO Free Organic Photovoltaic Devices,” Adv. Mater. 19(19), 2893–2897 (2007).
[CrossRef]

Jen, A. K.-Y.

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

Jo, J.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

Jones, S. C.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Kafafi, Z. H.

G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
[CrossRef]

Kang, M.-G.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

Kim, D.-Y.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

Kim, J.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

Kim, M.-S.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

Kim, S.-S.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

Kim, W.

G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
[CrossRef]

Kippelen, B.

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environmental Science 2(3), 251–261 (2009).
[CrossRef]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
[CrossRef]

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
[CrossRef]

Krebs, F. C.

F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron. 10(5), 761–768 (2009).
[CrossRef]

Kushto, G. P.

G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
[CrossRef]

Le, Q. T.

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

Lee, J.-Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Leo, K.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
[CrossRef]

Levi, D.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Li, F.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Li, T.-D.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Marder, S. R.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

McGhie, A. R.

A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
[CrossRef]

Meiss, J.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
[CrossRef]

Morsli, M.

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

Na, S.-I.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

Niggemann, M.

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Nüesch, F.

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

O'Connor, B.

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Paetzold, R.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Peumans, P.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Pipe, K. P.

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Potscavage, W. J.

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
[CrossRef]

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Riede, M. K.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
[CrossRef]

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Riedo, E.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Roeger, S.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Rothberg, L. J.

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

Shtein, M.

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Szoszkiewicz, R.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Tian, W.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Tvingstedt, K.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

K. Tvingstedt and O. Inganäs, “Electrode Grids for ITO Free Organic Photovoltaic Devices,” Adv. Mater. 19(19), 2893–2897 (2007).
[CrossRef]

Winnacker, A.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Wittmann, G.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Yip, H.-L.

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

Yoo, S.

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
[CrossRef]

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
[CrossRef]

Zhang, F.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Zhou, Y.

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

Zimmermann, B.

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Zou, J.

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

Adv. Mater.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[CrossRef]

K. Tvingstedt and O. Inganäs, “Electrode Grids for ITO Free Organic Photovoltaic Devices,” Adv. Mater. 19(19), 2893–2897 (2007).
[CrossRef]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20, 4308–4313 (2008).

Appl. Phys. Lett.

J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett. 96(20), 203301 (2010).
[CrossRef]

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

W. J. Potscavage, S. Yoo, and B. Kippelen, “Origin of the open-circuit voltage in multilayer heterojunction organic solar cells,” Appl. Phys. Lett. 93(19), 193308 (2008).
[CrossRef]

Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Appl. Phys. Lett. 92(23), 233308 (2008).
[CrossRef]

G. P. Kushto, W. Kim, and Z. H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes,” Appl. Phys. Lett. 86(9), 093502 (2005).
[CrossRef]

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett. 94(1), 013303 (2009).
[CrossRef]

B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer,” Appl. Phys. Lett. 92(8), 083304 (2008).
[CrossRef]

S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett. 85(22), 5427–5429 (2004).
[CrossRef]

F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett. 74(6), 880–882 (1999).
[CrossRef]

Energy Environmental Science

B. Kippelen and J.-L. Bredas, “Organic photovoltaics,” Energy Environmental Science 2(3), 251–261 (2009).
[CrossRef]

J. Appl. Phys.

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

J. Cryst. Growth

A. R. McGhie, A. F. Garito, and A. J. Heeger, “A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules,” J. Cryst. Growth 22(4), 295–297 (1974).
[CrossRef]

Nano Lett.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Org. Electron.

F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron. 10(5), 761–768 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

B. Zimmermann, M. Glatthaar, M. Niggemann, M. K. Riede, A. Hinsch, and A. Gombert, “ITO-free wrap through organic solar cells–A module concept for cost-efficient reel-to-reel production,” Sol. Energy Mater. Sol. Cells 91(5), 374–378 (2007).
[CrossRef]

Solid-State Electron.

S. Yoo, W. J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, and B. Kippelen, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron. 51(10), 1367–1375 (2007).
[CrossRef]

Other

Solarmer Energy, “ http://www.solarmer.com/ ” (2010)

S. Choi, W. J. Potscavage, Jr., and B. Kippelen, “Area-scaling of Organic Solar Cells and Integrated Modules,” in Organic Materials and Devices for Sustainable Energy Systems, J. Xue, ed. (Mat. Res. Soc. Symp. Proc., Boston, MA, USA, 2009), p. S06.

US Geological Survey, “ http://minerals.usgs.gov/minerals/pubs/commodity/indium/

Supplementary Material (1)

» Media 1: PDF (50 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Device geometry of ITO-free small-area OPV device (0.1 cm2) without a grid.

Fig. 2
Fig. 2

ITO-free large-area device (7.3 cm2) with a grid. The grid was composed of two metal layers: sputtered Au (100 nm) and electroplated Cu (5 µm). The thin Au grid connects the PEDOT:PSS electrode to the thick Cu grid. (Media 1)

Fig. 3
Fig. 3

Complete device. Electroplated thick Cu grid is passivated with photoresist to prevent any electrical shorts with the top Al electrode.

Fig. 4
Fig. 4

Optical transmission spectra for 136-nm-thick ITO (solid line) and 134-nm-thick film of PEDOT:PSS (dashed line, Clevios PH1000) on glass substrates.

Fig. 5
Fig. 5

(a) Experimental J-V characteristics of the small-area devices (~0.1 cm2) without a grid and (b) the large-area devices (~7 cm2) with and without a grid in the dark and under illumination with either an ITO or PEDOT:PSS hole selective electrode. Inset: EQE for the small-area devices. Solid lines represent devices with a PEDOT:PSS anode while symbols represent devices with an ITO anode.

Tables (1)

Tables Icon

Table 1 Summary of the photovoltaic parameters measured in solar cells with different areas and geometry. Measured R S A is extracted from the inverse slope of the forward characteristics in Fig. 5. Small cells (0.13 and 0.12 cm2) have one contact while large-area cells (7 and 7.3 cm2) have two contacts on both ends. L is the device length and s is the grid space. Illumination was 96 mW/cm2. Average values and standard deviations were based on measurements of 5 devices.

Metrics