Abstract

We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [CrossRef] [PubMed]
  2. B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
    [CrossRef]
  3. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
    [CrossRef]
  4. N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009).
    [CrossRef]
  5. G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
    [CrossRef] [PubMed]
  6. R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
    [CrossRef] [PubMed]
  7. A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
    [CrossRef]
  8. T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994).
    [CrossRef]
  9. K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
    [CrossRef]
  10. P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
    [CrossRef]
  11. B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
    [PubMed]
  12. S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
    [CrossRef]
  13. T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
    [CrossRef]
  14. T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
    [CrossRef]
  15. P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
    [CrossRef]
  16. F. Yang, K. Sun, and S. R. Forrest, “Efficient solar cells using all-organic nanocrystalline networks,” Adv. Mater. 19, 4166- + (2007).
  17. S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev. 97(6), 1793–1896 (1997).
    [CrossRef]
  18. American society for testing and materials Standards Nos. E1021, E948, and E973.
  19. XRD data on ITO substrates was similar, but Si is shown here due to the lower noise floor.
  20. A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
    [CrossRef]
  21. W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
    [CrossRef]
  22. J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
    [CrossRef]
  23. R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
    [CrossRef]
  24. J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
    [CrossRef]
  25. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, submitted.
  26. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
    [CrossRef] [PubMed]
  27. J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
    [CrossRef]
  28. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
    [CrossRef]

2010 (4)

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
[CrossRef] [PubMed]

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

2009 (4)

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009).
[CrossRef]

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

2007 (4)

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
[CrossRef]

B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
[CrossRef]

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

2006 (1)

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

2005 (2)

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

2004 (2)

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

2000 (2)

P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
[CrossRef]

S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
[CrossRef]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

1997 (1)

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev. 97(6), 1793–1896 (1997).
[CrossRef]

1994 (1)

T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994).
[CrossRef]

1991 (1)

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

1984 (1)

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Akimoto, K.

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Armstrong, N. R.

T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994).
[CrossRef]

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Bailey-Salzman, R. F.

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
[CrossRef]

Belak, A. A.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

Benziger, J. B.

R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
[CrossRef] [PubMed]

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

Borek, C.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Bulovic, V.

P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
[CrossRef]

Burk, D. P.

B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
[CrossRef]

Chauhan, K. V.

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

Chen, S.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Chen, W.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Cloots, R.

S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
[CrossRef]

Danziger, J.

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Dodelet, J. P.

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Dosch, H.

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Durr, A. C.

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Ferguson, A. J.

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

Forrest, S. R.

R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
[CrossRef] [PubMed]

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009).
[CrossRef]

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
[CrossRef]

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
[CrossRef]

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
[CrossRef]

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev. 97(6), 1793–1896 (1997).
[CrossRef]

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Fukasawa, R.

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Gao, X. Y.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Giebink, N. C.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

Heutz, S.

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
[CrossRef]

Huang, H.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Huang, L. Z.

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

Huang, Y. L.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Inganas, O.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

Jones, T. S.

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
[CrossRef]

Kaplan, M. L.

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Kawai, S.

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Lee, P.

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Li, N.

N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009).
[CrossRef]

Lovinger, A. J.

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Lunt, R. R.

R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
[CrossRef] [PubMed]

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

Nebesny, K. W.

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Nickel, B.

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Perez, M. D.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

Peumans, P.

P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
[CrossRef]

Qi, D. C.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Rand, B. P.

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
[CrossRef]

B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
[CrossRef]

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

Renshaw, K.

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

Saito, K.

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

Sakurai, T.

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Schmidt, P. H.

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Schuerlein, T. J.

T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994).
[CrossRef]

Shan-Fia, V.

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Shibata, J.

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Sullivan, P.

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

Taffner, U.

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Thompson, M. E.

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Uchida, S.

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

Venkatesan, T.

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

Wang, H. B.

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

Wang, S. Y.

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

Wang, Y. Z.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Wee, A. T. S.

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

Wei, G. D.

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

Xue, J. G.

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

Yan, D. H.

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

Yang, J. L.

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

Yu, B.

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

ACS Nano (1)

G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010).
[CrossRef] [PubMed]

Adv. Mater. (3)

R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010).
[CrossRef] [PubMed]

B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010).
[PubMed]

J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007).
[CrossRef]

J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004).
[CrossRef]

S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000).
[CrossRef]

P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007).
[CrossRef]

P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000).
[CrossRef]

N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009).
[CrossRef]

Chem. Mater. (1)

J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991).
[CrossRef]

Chem. Rev. (1)

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev. 97(6), 1793–1896 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[CrossRef]

A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984).
[CrossRef]

J. Phys. Chem. C (2)

K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010).
[CrossRef]

W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005).
[CrossRef]

Nature (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Org. Electron. (1)

T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007).
[CrossRef]

Phys. Rev. B (1)

B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007).
[CrossRef]

Thin Solid Films (1)

A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006).
[CrossRef]

Other (4)

N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, submitted.

American society for testing and materials Standards Nos. E1021, E948, and E973.

XRD data on ITO substrates was similar, but Si is shown here due to the lower noise floor.

F. Yang, K. Sun, and S. R. Forrest, “Efficient solar cells using all-organic nanocrystalline networks,” Adv. Mater. 19, 4166- + (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) X-ray diffraction patterns of PTCDA, CuPc, DIP, and combinations of these layers on Si. The standing-up CuPc (200) orientation (b) disappears when CuPc is grown on a pre-deposited PTCDA template layer. This orientation is then replaced by the (c) flat-lying orientations as evidenced by the appearance of the (312) and ( 3 ¯ 13) diffraction peaks.

Fig. 2
Fig. 2

(a) Ultraviolet photoelectron spectroscopy data for 1.5 nm thick PTCDA, 5.0 nm thick CuPc, and 5.0 nm thick templated films of DIP and CuPc on indium tin oxide (ITO). The high energy cutoff of CuPc shifts ~0.2 eV when templated on PTCDA compared to films on ITO. Dashed lines show extrapolations of the data to the energy axis. (b) Energy level diagrams inferred from the measured highest occupied molecular orbital energies CuPc and PTCDA (units of eV). Symbols and colors in (a) correspond to those in (b).

Fig. 3
Fig. 3

Atomic force microscope images of (a) 25 nm thick CuPc, (b) 1.5 nm thick PTCDA/25 nm thick CuPc, (c) 1.5 nm thick DIP/25 thick nm CuPc, and (d) 1.5 nm thick PTCDA/1.5 nm thick DIP/25 nm CuPc. Lateral spans of each image are 5 μm. The cluster-like morphology of 3(d) suggests a bulk heterojunction interface between CuPc and C60.

Fig. 4
Fig. 4

(a) External quantum efficiency (EQE) and absorption measured for Devices I - IV. (b) Ratio of the internal quantum efficiencies (IQE) of Device IV to Device III.

Tables (1)

Tables Icon

Table 1 OPV performance for planar heterojunction (PHJ) and planar-mixed heterojunction (PMHJ) devices under simulated 1 sun, AM1.5G illumination

Metrics