Abstract

We study the effects of bifunctional linker on the photovoltaic properties of P3HT/CdSe quantum dot-linker-ZnO nanocolumn heterostructure. The CdSe quantum dots are bound on the surface of ZnO nanocolumns through either aliphatic linker of 3-aminopropyl trimethoxysilane(APS) or aromatic linker of p-aminophenyl trimethoxysilane(APhS) using simple solution process. As compared to CdSe bound by aliphatic linker(APS), while CdSe is bound by aromatic linker(APhS), more than one fold increase of short circuit current density (JSC) of the device obtained under irradiance, which is attributed to a more efficient charge transfer dynamics at interface. In addition, the ZnO-APhS-CdSe/P3HT devices possess about 4.8 folds in power conversion efficiency as compared to ZnO/P3HT device as the results of reduction in shunt loss and interfacial recombination.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
    [CrossRef]
  2. S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
    [CrossRef]
  3. B. Park and M. Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009).
    [CrossRef] [PubMed]
  4. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
    [CrossRef] [PubMed]
  5. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
    [CrossRef]
  6. Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
    [CrossRef] [PubMed]
  7. E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
    [CrossRef]
  8. A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
    [CrossRef]
  9. K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
    [CrossRef]
  10. D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
    [CrossRef]
  11. T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
    [CrossRef]
  12. D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
    [CrossRef]
  13. P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
    [CrossRef] [PubMed]
  14. Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
    [CrossRef]
  15. L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
    [CrossRef]
  16. P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
    [CrossRef]
  17. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
    [CrossRef] [PubMed]
  18. E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
    [CrossRef] [PubMed]
  19. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
    [CrossRef] [PubMed]
  20. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
    [CrossRef] [PubMed]
  21. Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
    [CrossRef]
  22. D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
    [CrossRef]
  23. J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005).
    [CrossRef] [PubMed]
  24. I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
    [CrossRef]
  25. G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
    [CrossRef]
  26. M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
    [CrossRef]
  27. R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
    [CrossRef]

2010 (2)

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

2009 (6)

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

B. Park and M. Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009).
[CrossRef] [PubMed]

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

2008 (4)

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

2007 (5)

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

2006 (4)

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

2005 (3)

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
[CrossRef]

2002 (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

2000 (1)

G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
[CrossRef]

Alivisatos, A. P.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Atienzar, P.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

Aydil, E. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Barea, E. M.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

Basu, J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Beaupré, S.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Beek, W. J. E.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

Bisquert, J.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Boercker, J. E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Boyle, D. S.

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

Bradley, D. D. C.

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Carter, C. B.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Chang, C.-H.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Chang, C.-P.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Chang, J.

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Chang, L.

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

Chen, C.-W.

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Chen, P.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Chen, Y.-F.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Chien, C.-T.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Cho, S.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Chu, M.-W.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Chu, T.-H.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Chuang, C.-H.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Coates, N.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Collins, R. T.

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

Dittmer, J. J.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Divakar, R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Dunlop, E. D.

G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
[CrossRef]

Durrant, J. R.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Enache-Pommer, E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Fabregat-Santiago, F.

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Friesen, G.

G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
[CrossRef]

Gamelin, D. R.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Giménez, S.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Ginley, D. S.

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

Gómez, R.

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Gong, X.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Goossens, A.

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
[CrossRef]

Govender, K.

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

Graetzel, M.

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Grätzel, M.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Greene, L. E.

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

Han, M. Y.

Hashimoto, K.

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

Heeger, A. J.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Hirota, K.

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

Hod, I.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

Huynh, W. U.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Illy, B. N.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

Ishwara, T.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

Janssen, R. A. J.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

Kemerink, M.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

Kim, J. Y.

J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005).
[CrossRef] [PubMed]

Kopidakis, N.

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

Kortshagen, U. R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Lana-Villareal, T.

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Law, M.

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

Leclerc, M.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Lee, H.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Lee, K.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Lee, Y.-J.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

Lee, Y.-Y.

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

Leschkies, K. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Li, S.-S.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Lin, T.-Y.

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Lin, Y.-Y.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Liou, S.-C.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Liu, I.-S.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Lloyd, M. T.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

Lo, H.-H.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Ma, W.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

McCready, E. M.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

Moehl, T.

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Monson, T. C.

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

Moon, J.-S.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Mora-Seró, I.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

Moses, D.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Nanu, M.

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
[CrossRef]

Nazeeruddin, M. K.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Nelson, J.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

Nelson, J. J.

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Norris, D. J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

O’Regan, B. C.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

O'Brien, P.

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

O'Hayre, R.

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

Olson, D. C.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

Osterloh, F. E.

J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005).
[CrossRef] [PubMed]

Ozsar, M. E.

G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
[CrossRef]

Park, B.

Park, S.-H.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Peiro, A. M.

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

Peiró, A. M.

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

Pirisa, J.

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

Ravirajan, P.

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

Roy, A.

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Ryan, M. P.

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

Schoonman, J.

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
[CrossRef]

Shaheen, S. E.

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

Shalom, M.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

Spoerke, E. D.

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

Su, W.-F.

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

Tajima, K.

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

Takanezawa, K.

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

Voigt, J. A.

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

Wang, M.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Wei, Q. S.

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

White, M. S.

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

Wienk, M. M.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

Wu, J.-J.

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

Yang, C.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Yang, P.

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

Yang, X.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

Yuhas, B.

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

Zaban, A.

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

Zakeeruddin, S. M.

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Adv. Mater. (2)

T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008).
[CrossRef]

M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009).
[CrossRef]

E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009).
[CrossRef]

J. Am. Chem. Soc. (3)

Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009).
[CrossRef] [PubMed]

E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010).
[CrossRef] [PubMed]

J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008).
[CrossRef]

A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006).
[CrossRef]

J. Phys. Chem. B (2)

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005).
[CrossRef]

P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (4)

D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007).
[CrossRef]

D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008).
[CrossRef]

L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).
[CrossRef]

K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007).
[CrossRef]

J. Phys. Chem. Lett. (1)

P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010).
[CrossRef]

Nano Lett. (2)

H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009).
[CrossRef] [PubMed]

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Nanotechnology (3)

Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006).
[CrossRef]

I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008).
[CrossRef] [PubMed]

R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007).
[CrossRef]

Nat. Photonics (1)

S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Opt. Express (1)

Science (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Thin Solid Films (2)

D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006).
[CrossRef]

G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the binding of CdSe quantum dots to ZnO nanocolumns by linker.

Fig. 2
Fig. 2

Energy level diagram for a CdSe quantum dots coated ZnO nanocolumns with P3HT.

Fig. 3
Fig. 3

Current density versus voltage of ITO/ZnO nanocolumn/P3HT/Ag without and with a CdSe quantum dot layer attached by APS or APhS at the ZnO nanocolumn/P3HT interface (a) in dark and (b) under illumination. (c) Photoluminescence spectra of CdSe-linker-ZnO as compared to CdSe thin film.

Fig. 4
Fig. 4

The electrochemical impedance spectroscopy for the devices of ITO/ZnO nanocolumn/P3HT/Ag without and with a CdSe quantum dot layer attached with different linkers under illumination (the equivalent circuit is shown in the inset).

Metrics