Abstract

Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley–Quiesser limit for a single-junction photovoltaic cell).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Kolm, “Solar-battery power source,” Tech. Rep., MIT Lincoln Laboratory, “Quarterly Progress Report,” Group 35, 13 (1956).
  2. B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963).
    [CrossRef]
  3. R. Black, P. Baldasaro, and G. Charache, “Thermophotovoltaics - development status and parametric considerations for power applications,” in International Conference on Thermoelectrics, 18, pp. 639–644 (1999).
  4. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
    [CrossRef]
  5. H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
    [CrossRef]
  6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, Princeton, NJ, 2008).
  7. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).
  8. J. M. Gee, J. B. Moreno, S.-Y. Lin, and J. G. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in Twenty-ninth IEEE Photovolt. Spec. Conf. (2002).
    [CrossRef]
  9. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
    [CrossRef]
  10. U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003).
    [CrossRef]
  11. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  12. D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
    [CrossRef]
  13. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
    [CrossRef]
  14. T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
    [CrossRef]
  15. S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
    [CrossRef]
  16. J. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150–153 (2002).
    [CrossRef]
  17. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009).
    [CrossRef] [PubMed]
  18. B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).
  19. M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).
  20. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  21. D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [CrossRef]
  22. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis, University of Ghent, Belgium (2001).
  23. A. Taflove, and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA, 2000).
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  25. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
    [CrossRef]
  26. J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991).
    [CrossRef]
  27. G. Rybicki, and A. Lightman, Radiative processes in astrophysics (John Wiley and Sons, 1979).
  28. S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
    [CrossRef]
  29. M. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, Dordrecht, Holland, 1994).
  30. J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001).
    [CrossRef]
  31. R. C. Pilawa-Podgurski, N. A. Pallo, W. R. Chan, D. J. Perreault, and I. L. Celanovic, “Low-power maximum power point tracker with digital control for thermophotovoltaic generators,” 25th IEEE Applied Power Electronics Conference, 961–967 (2010).
  32. C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
    [CrossRef]
  33. S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007).
    [CrossRef]
  34. B. Blackwell, “Design, fabrication, and characterization of a micro fuel processor,” Ph.D. thesis, Massachusetts Institute of Technology (2008).
  35. C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
    [CrossRef]
  36. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
    [CrossRef]
  37. S. Sze, Physics of Semiconductor Devices (Wiley and Sons, New York, 1981).
  38. W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
    [CrossRef]
  39. P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(056), 616 (2002).
    [CrossRef]
  40. C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).
    [CrossRef]
  41. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993).
    [CrossRef] [PubMed]
  42. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  43. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  44. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.
  45. W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985).
    [CrossRef]
  46. N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
    [CrossRef]
  47. A. Luque, “Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
    [CrossRef]
  48. A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
    [CrossRef]
  49. E. Rephaeli, and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15,145–15,159 (2009).
    [CrossRef]
  50. ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
    [PubMed]
  51. T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
    [CrossRef]
  52. Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D Appl. Phys. 32, 1938–1944 (1999).
    [CrossRef]
  53. C. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,” Tech. Rep. TP-520–31267, National Renewable Energy Laboratory (2002).
  54. N. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
    [CrossRef]
  55. N. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using sub-wavelength gratings,” Opt. Express 18, 5525–5540 (2010).
    [CrossRef] [PubMed]
  56. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [CrossRef]
  57. C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989).
    [CrossRef]

2010

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

N. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using sub-wavelength gratings,” Opt. Express 18, 5525–5540 (2010).
[CrossRef] [PubMed]

2009

2008

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

2007

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007).
[CrossRef]

A. Luque, “Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

2006

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

2005

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).

S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

2004

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

2003

N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003).
[CrossRef]

2002

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(056), 616 (2002).
[CrossRef]

2001

J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001).
[CrossRef]

2000

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

1999

D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D Appl. Phys. 32, 1938–1944 (1999).
[CrossRef]

1998

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

1996

1993

1991

J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991).
[CrossRef]

1990

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

1989

C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989).
[CrossRef]

1985

W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985).
[CrossRef]

1980

C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).
[CrossRef]

1967

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

1963

B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963).
[CrossRef]

1956

H. H. Kolm, “Solar-battery power source,” Tech. Rep., MIT Lincoln Laboratory, “Quarterly Progress Report,” Group 35, 13 (1956).

Agnihotri, O.

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Agrawal, M.

Akiyama, S.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Algora, C.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Anikeev, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Avniel, Y.

Baldasaro, P.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Barton, P. I.

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).

Beausang, J. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Belenky, G. L

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Bermel, P.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009).
[CrossRef] [PubMed]

Bett, A.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Bhatnagar, M.

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Blasi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Bovard, B.

U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003).
[CrossRef]

Bovard, B. G.

Brown, E. J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Burger, S. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Celanovic, I.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Chachuat, B.

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).

Chan, D. L.

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

Chan, W.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Charache, G.

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Choi, H.

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Chou, S.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Connors, M. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Corregidor, V.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Culshaw, I.

D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Danielson, L.

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Danielson, L. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Dashiell, M. W.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Datas, A.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

DePoy, D.

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

DePoy, D. M.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Deshmukh, S.

S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007).
[CrossRef]

Dimroth, F.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Donetski, D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Ehsani, H.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Fan, S.

E. Rephaeli, and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15,145–15,159 (2009).
[CrossRef]

Fernandez, J.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Fourspring, P. M.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Gablonsky, J. M.

J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001).
[CrossRef]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009).
[CrossRef] [PubMed]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Gratrix, E. J.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

Green, M.

J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991).
[CrossRef]

Grein, C.

C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989).
[CrossRef]

Harder, N.

N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[CrossRef]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Henry, C.

C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).
[CrossRef]

Herzinger, C.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Huang, R.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Huang, R. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jensen, C.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

Joannopoulos, J. D.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009).
[CrossRef] [PubMed]

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

John, S.

S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009).
[CrossRef] [PubMed]

Johs, B.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Jr, W. F. T.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Kassakian, J.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Kelley, C. T.

J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001).
[CrossRef]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kolm, H. H.

H. H. Kolm, “Solar-battery power source,” Tech. Rep., MIT Lincoln Laboratory, “Quarterly Progress Report,” Group 35, 13 (1956).

Kucherenko, S.

S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Lazo-Wasem, J. E.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

Lee, R. K.

Li, J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Li, L.

Li, Z.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Luque, A.

A. Luque, “Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

Luryi, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Martin, D.

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Martinelli, R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Masel, R.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

McGahan, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Miesse, C.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

Mitsos, A.

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).

Nichols, G.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

O’Sullivan, F.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Ortabasi, U.

U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Paulson, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Peumans, P.

Pincon, O.

Rahmlow, T. D.

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

Rahner, K. D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Ransom, S.

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Rephaeli, E.

E. Rephaeli, and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15,145–15,159 (2009).
[CrossRef]

Ries, H.

W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Sathiaraj, T.

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Scherer, A.

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sergeant, N.

Shannon, M.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

Sharbaty, A.

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Shellenbarger, Z. A.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Short, M.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

Shu, C.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Soljacic, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

Spirkl, W.

W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985).
[CrossRef]

Sytsko, Y.

S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Talamo, P.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Taylor, G.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Thangarj, R.

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Turner, G. W

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Vlachos, D.

S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007).
[CrossRef]

Wada, K.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Wang, C. A.

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Wang, R.

S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

Wedlock, B.

B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963).
[CrossRef]

Whittaker, D.

D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Wilkinson, P.

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(056), 616 (2002).
[CrossRef]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

Woollam, J.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Wurfel, P.

N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xu, Y.

Xue, H.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Yang, W.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Yariv, A.

Yeng, Y. X.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Yunt, M.

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

Zhang, Q.-C.

Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D Appl. Phys. 32, 1938–1944 (1999).
[CrossRef]

Zhao, J.

J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991).
[CrossRef]

AIChE J.

C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004).
[CrossRef]

AIP Conf. Proc.

U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003).
[CrossRef]

T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007).
[CrossRef]

A. Luque, “Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[CrossRef]

C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[CrossRef]

Chem. Eng. Sci.

B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).

Combust. Flame

S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007).
[CrossRef]

Comput. Optim. Appl.

S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Group

H. H. Kolm, “Solar-battery power source,” Tech. Rep., MIT Lincoln Laboratory, “Quarterly Progress Report,” Group 35, 13 (1956).

IEEE Trans. Electron. Dev.

J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991).
[CrossRef]

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006).
[CrossRef]

J. Appl. Phys.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985).
[CrossRef]

C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).
[CrossRef]

J. Glob. Optim.

J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001).
[CrossRef]

J. Mod. Opt.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D Appl. Phys. 32, 1938–1944 (1999).
[CrossRef]

Nanoscale Microscale Thermophys. Eng.

H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005).
[CrossRef]

Nat. Photonics

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.

D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006).
[CrossRef]

S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

Phys. Rev. B

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(056), 616 (2002).
[CrossRef]

Physica

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Proc. IEEE

B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963).
[CrossRef]

Process Syst. Eng.

M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).

Semicond. Sci. Technol.

N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells

W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010).
[CrossRef]

Thin Solid Films

T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990).
[CrossRef]

Other

C. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,” Tech. Rep. TP-520–31267, National Renewable Energy Laboratory (2002).

ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
[PubMed]

J. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150–153 (2002).
[CrossRef]

R. Black, P. Baldasaro, and G. Charache, “Thermophotovoltaics - development status and parametric considerations for power applications,” in International Conference on Thermoelectrics, 18, pp. 639–644 (1999).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, Princeton, NJ, 2008).

J. M. Gee, J. B. Moreno, S.-Y. Lin, and J. G. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in Twenty-ninth IEEE Photovolt. Spec. Conf. (2002).
[CrossRef]

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis, University of Ghent, Belgium (2001).

A. Taflove, and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA, 2000).

G. Rybicki, and A. Lightman, Radiative processes in astrophysics (John Wiley and Sons, 1979).

R. C. Pilawa-Podgurski, N. A. Pallo, W. R. Chan, D. J. Perreault, and I. L. Celanovic, “Low-power maximum power point tracker with digital control for thermophotovoltaic generators,” 25th IEEE Applied Power Electronics Conference, 961–967 (2010).

M. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, Dordrecht, Holland, 1994).

S. Sze, Physics of Semiconductor Devices (Wiley and Sons, New York, 1981).

B. Blackwell, “Design, fabrication, and characterization of a micro fuel processor,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Approaches to TPV conversion of heat to electricity. The traditional design is depicted in (a), and a novel approach based on manipulation of the photonic density of states is depicted in (b). The anticipated increase in efficiency associated with the latter approach can exceed 100%.

Fig. 12
Fig. 12

Optimized emittance spectra of semiconductor selective absorbers depicted in Fig. 10, as a function of angle. Note that optimized designs with one or more front coating layers see fairly constant performance up to angles of ±60°.

Fig. 2
Fig. 2

Design of the μTPV generator. Hydrocarbon fuel flows from a storage tank to the interior of the selective emitter and back out. The heated selective emitter then radiatively couples to the nearby TPV module to generate electricity (adapted from Ref. 31).

Fig. 3
Fig. 3

Three 1D structures examined as selective emitters in this work: (a) a polished Si wafer (b) a polished Si wafer with a 4-bilayer 1D PhC, and (c) a polished Si wafer with a metal layer (tungsten or platinum) and a 4-bilayer 1D PhC. Their optimized emittance spectra are shown in Fig. 4; the resulting efficiency, power (per unit area), and overall figure of merit for each structure is listed in Table 2.

Fig. 4
Fig. 4

Spectral emittance of four structures at 1000 K: a polished Si wafer (Fig. 3(a)), a polished Si wafer with a 4-bilayer 1D PhC (Fig. 3(b)), a polished Si wafer with tungsten and a 4-bilayer 1D PhC (Fig. 3(c)), and a platinum wafer with a 3-bilayer 1D PhC (similar to Fig. 3(c)). The efficiency, power, and overall figure of merit for each structure is listed in Table 2.

Fig. 6
Fig. 6

(a) Side view of the tungsten 2D PhC selective emitter, consisting of partially open cylindrical cavities supporting multiple resonant modes with a low-frequency cutoff, arranged in a 2D square array. (b) The structure depicted in (a) plus a rugate filter (depicted here with 6 distinct materials and 6 periods of periodicity p) on top, separated by an air gap.

Fig. 7
Fig. 7

Emissivity spectrum of three tungsten structures: two experimentally measured (flat and a 2D PhC) and one computer-optimized (a 2D PhC with larger a and r).

Fig. 8
Fig. 8

Spectral emittance for combined tungsten 2D PhC and rugate filter. Emitted photons with wavelengths λ < 2.23 μm (depicted in blue) are capable of being absorbed by the InGaAsSb TPV device.

Fig. 9
Fig. 9

Diagram of a solar TPV system. Sunlight is collected via optical concentrators and sent to a selectively absorbing surface. That structure is thermally coupled to a selective emitter, which in conjunction with a filter, thermally emits photons with energies matched to the semiconductor bandgap of the TPV cell receiving them.

Fig. 10
Fig. 10

Three related semiconductor selective absorbers (a) germanium wafer on a silver substrate (b) previous with a single front coating layer (c) germanium on silver with a single dielectric back coating and three front coating layers in front.

Fig. 13
Fig. 13

Optimized emittance spectra of the semiconductor selective absorbers depicted in Fig. 10, with silicon substituted for germanium, designed for operation under concentrated AM1.5 sunlight at 1000 K and C = 100.

Fig. 11
Fig. 11

Optimized emittance spectra of the semiconductor selective absorbers depicted in Fig. 10, designed for operation in unconcentrated AM1.5 sunlight at 400 K.

Fig. 14
Fig. 14

Optimized emittance spectra for emitters at 2360 K (left) and 1300 K (right). The corresponding efficiencies are 54.2% and 44.7%, respectively.

Fig. 15
Fig. 15

Optimized emittance spectra for emitters at 2360 K (left) and 1000 K (right). The corresponding efficiencies are 66.3% and 44.0%, respectively.

Fig. 5
Fig. 5

(Inset) Chirped rugate filter index as a function of position (using 6 materials) and (Main image) its emittance as a function of wavelength. Emitted photons with wavelengths λ < 2.23 μm (depicted in blue) are capable of being absorbed by the InGaAsSb TPV device.

Fig. 16
Fig. 16

Model of the dispersion of the imaginary part of the refractive index for both T = 300 K, along with a comparison to experiment [25], and projected values for T = 1000 K.

Tables (6)

Tables Icon

Table 1 Experimental measurements of the TPV micro-combustor system depicted in Fig. 2, with one TPV cell of area 0.5 cm2, when fueled by butane and oxygen, as a function of butane flow rate (note that all measurements yielded an open-circuit voltage Voc = 247 mV per cell). Note that Isc is the short circuit current of the cell, and FF is the fill factor, defined as the ratio of the maximum power output to the product of Isc and Voc

Tables Icon

Table 2 Predicted efficiency, power generation, and overall product figure of merit values for multiple μTPV emitter designs at 1000 K (view factor F = 0.4)

Tables Icon

Table 3 Selective absorber data for operation under unconcentrated light at 400 K

Tables Icon

Table 4 Selective absorber data for operation under 100x concentrated light at 1000 K

Tables Icon

Table 5 Selective emitter optimization results. Symbols are defined in the text; those with dimensions of length are quoted in nm, those with units of energy are quoted in eV, and those with dimensions of temperature are quoted in K. Note that different FOM values are not necessarily comparable

Tables Icon

Table 6 Selective absorber optimization results. Symbols are defined in the text; those with dimensions of length are quoted in nm and those with dimensions of temperature are quoted in K

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J ( V ) = 0 d λ [ 2 q c λ 4 ɛ ( λ ) EQE ( λ ) exp ( h c / λ k T ) 1 ] [ q ( n 2 + 1 ) E g 2 k T d 4 π 2 h ¯ 3 c 2 e E g / m k T d + J nr ] ( e q V / m k T d 1 ) ,
η t = α ¯ ɛ ¯ σ T 4 C I
ɛ ¯ = 0 d λ ɛ ( λ ) / { λ 5 [ exp ( h c / λ k T ) 1 ] } 0 d λ / { λ 5 [ exp ( h c / λ k T ) 1 ] } .
E g ( T ) = E g ( 0 ) α T 2 T + β ,
k ( ω ) = { k o exp [ ( h ¯ ω E f ) / E o ] , h ¯ ω < E f k o exp [ ( h ¯ ω E f ) / α E o ] , E f h ¯ ω < E f + 2 α E o k 1 exp [ β ( h ¯ ω E g 2 α E o ] , E f + 2 α E o h ¯ ω < E x k 2 h ¯ ω E x , h ¯ ω E x ,

Metrics