Abstract

In this paper, numerical algorithms for extraction of opto-electronic material and device parameters in organic light-emitting devices (OLEDs) are presented and tested for their practical use. Of particular interest is the extraction of the emission profile and the source spectrum. A linear and a nonlinear fitting method are presented and applied to emission spectra from OLEDs in order to determine the shape of the emission profile and source spectrum. The motivation of the work is that despite the existence of advanced numerical models for optical and electronic simulation of OLEDs, their practical use is limited if methods for the extraction of model parameters are not well established. Two fitting methods are presented and compared to each other and validated on the basis of consistency checks. Our investigations show the impact of the algorithms on the analysis of realistic OLED structures. It is shown that both fitting methods perform reasonably well, even if the emission spectra to be analyzed are noisy. In some cases the nonlinear method performs slightly better and can achieve a perfect resolution of the emission profile. However, the linear method provides the advantage that no assumption on the mathematical shape of the emission profile has to be made.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
    [CrossRef] [PubMed]
  2. S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
    [CrossRef]
  3. S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
    [CrossRef]
  4. J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
    [CrossRef]
  5. J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
    [CrossRef]
  6. J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
    [CrossRef]
  7. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
    [CrossRef]
  8. T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
    [CrossRef]
  9. H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.
  10. B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).
  11. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).
  12. B. Ruhstaller, T. Flatz, M. Moos, and G. Sartoris, “Optoelectronic OLED modeling for device optimization and analysis,” SID Symposium Digest of Technical Papers 38, 1686, (2007).
    [CrossRef]
  13. B. Ruhstaller, T. Flatz, D. Rezzonico, M. Moos, N. Reinke, E. Huber, R. Häusermann, and B. Perucco, “Comprehensive simulation of light-emitting and light-harvesting organic devices,” Proc. SPIE 7051, 7051J (2008).
  14. M. Roberts, “Optical modeling and efficiency optimization of P-OLED devices,” OEC’ 06, Organic Electronics Conference, Frankfurt, (2006).
  15. . H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
    [CrossRef]
  16. M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
    [CrossRef]
  17. S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
    [CrossRef]
  18. A. G. Fluxim, “Semiconducting emissive thin film optics simulator SETFOS,” http://www.fluxim.com.
  19. W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
    [CrossRef]
  20. B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).
  21. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14, 91 (1997).
    [CrossRef]
  22. M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
    [CrossRef]

2010 (3)

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

2009 (1)

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

2008 (4)

J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
[CrossRef] [PubMed]

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
[CrossRef]

2005 (2)

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
[CrossRef]

2003 (3)

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

2001 (1)

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

2000 (1)

W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
[CrossRef]

1997 (1)

1989 (1)

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
[CrossRef]

Barth, S.

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Bartyzel, M.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Basset, G.

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Beierlein, T.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Beierlein, T. A.

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

Bräuer, A. H.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

Brütting, W.

J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
[CrossRef] [PubMed]

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

Carter, S. A.

J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
[CrossRef]

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Carvelli, M.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Chen, C. H.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
[CrossRef]

Chopra, N.

J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
[CrossRef]

Coehoorn, R.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Danz, N.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

Flämmich, M.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

Friend, R. H.

W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
[CrossRef]

Frischeisen, J.

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
[CrossRef] [PubMed]

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Fukuoka, K.

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

Gather, M. C.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

Greenham, N. C.

W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
[CrossRef]

Greiner, H.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Gundlach, D. J.

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

Höhold, H.-H.

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Hosokawa, C.

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

Janssen, R. A. J.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Karg, S.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

Krummacher, B.

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

Kuma, H.

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

Lee, J.

J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
[CrossRef]

Leger, J. M.

J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
[CrossRef]

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Mayr, C.

Meerholz, K.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

Megens, M.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Michaelis, D.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

Müller, F.

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

Nisato, G.

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Nothofer, H.-G.

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Novotny, L.

Nowy, S.

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
[CrossRef] [PubMed]

Perucco, B.

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

Reinke, N. A.

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, and W. Brütting, “Surface plasmon resonance sensor utilizing an integrated organic light-emitting diode,” Opt. Express 16, 18426–18436 (2008).
[CrossRef] [PubMed]

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

Rezzonico, D.

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

Riel, H.

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Riess, W.

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Rost, C.

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

Ruhstaller, B.

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
[CrossRef]

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Scherf, U.

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Scott, J. C.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

Soa, F.

J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
[CrossRef]

Tang, C. W.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
[CrossRef]

Tillmann, H.

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Tokairin, H.

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

Tünnermann, A.

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

van Mensfoort, S. L. M.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

VanSlyke, S. A.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
[CrossRef]

Von Muehlenen, A.

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Walter, H.

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Wan, W. M. V.

W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
[CrossRef]

Wehenkel, D.

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

J. Lee, N. Chopra, and F. Soa, “Cavity effects on light extraction in organic light-emitting devices,” Appl. Phys. Lett. 92, 033303 (2008).
[CrossRef]

M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, “Measuring the profile of the emission zone in polymeric organic light-emitting diodes,” Appl. Phys. Lett. 94, 263301 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron. 9, 3 (2003).

J. Appl. Phys. (5)

B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 98, 15 (2001).

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 9 (1989).
[CrossRef]

J. M. Leger, B. Ruhstaller, and S. A. Carter, “Recombination profiles in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] light-emitting electrochemical cells,” J. Appl. Phys. 98(12), 124907 (2005).
[CrossRef]

S. Nowy, B. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[CrossRef]

W. M. V. Wan, N. C. Greenham, and R. H. Friend, “Interference effects in anisotropic optoelectronic devices,” J. Appl. Phys. 87, 5 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Polym. Sci., B, Polym. Phys. (1)

H. Walter, G. Basset, T. Beierlein, A. Von Muehlenen, and G. Nisato, “Combinatorial approach for fast screening of functional materials,” J. Polym. Sci. B Polym. Phys. in press.

Nat. Photonics (1)

S. L. M. van Mensfoort, M. Carvelli, M. Megens, D. Wehenkel, M. Bartyzel, H. Greiner, R. A. J. Janssen, and R. Coehoorn, “Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution,” Nat. Photonics 4, 329–335 (2010).
[CrossRef]

Opt. Express (1)

Org. Electron. (1)

M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis,” Org. Electron. 11, 1039–1046 (2010).
[CrossRef]

Phys. Rev. B (1)

J. M. Leger, S. A. Carter, B. Ruhstaller, H.-G. Nothofer, U. Scherf, H. Tillmann, and H.-H. Höhold, “Thickness dependent changes in the optical properties in PPV and PF polymer light-emitting diodes,” Phys. Rev. B 68(5), 054209 (2003).
[CrossRef]

Proc. SPIE (2)

S. Nowy, N. A. Reinke, J. Frischeisen, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes,” Proc. SPIE 6999, 69992V (2008).
[CrossRef]

B. Perucco, N. A. Reinke, F. Müller, D. Rezzonico, and B. Ruhstaller, “The influence of the optical environment on the emission profile and methods of its determination,” Proc. SPIE 7722, 14 (2010).

SID 05 Digest (1)

. H. Kuma, H. Tokairin, K. Fukuoka, and C. Hosokawa, “Optical simulation of OLED devices and its application for determination of emitting zone,” SID 05 Digest 1279, 1276–1279 (2005).
[CrossRef]

Synth. Met. (1)

T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Riess, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138, 213–221 (2003).
[CrossRef]

Other (4)

A. G. Fluxim, “Semiconducting emissive thin film optics simulator SETFOS,” http://www.fluxim.com.

B. Ruhstaller, T. Flatz, M. Moos, and G. Sartoris, “Optoelectronic OLED modeling for device optimization and analysis,” SID Symposium Digest of Technical Papers 38, 1686, (2007).
[CrossRef]

B. Ruhstaller, T. Flatz, D. Rezzonico, M. Moos, N. Reinke, E. Huber, R. Häusermann, and B. Perucco, “Comprehensive simulation of light-emitting and light-harvesting organic devices,” Proc. SPIE 7051, 7051J (2008).

M. Roberts, “Optical modeling and efficiency optimization of P-OLED devices,” OEC’ 06, Organic Electronics Conference, Frankfurt, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Open cavity organic LED (a) and cavity organic LED (b) with semi-sphere glass lens. θ stands for the observation angle.

Fig. 2
Fig. 2

(a) Calculated emission spectra from an open cavity OLED and fitted emission spectra. The values in parenthesis show the combination of parameters used for the assumed emission profile to calculate the emission spectrum. The first value indicates the relative position, the second value stands for the width of the profile. (b) Comparison between the assumed and extracted emission profiles. The linear method was used here without incorporation of angular information.

Fig. 3
Fig. 3

(a) Calculated emission spectra from a cavity OLED and fitted emission spectra. (b) Comparison between the assumed and extracted emission profiles. The linear method was used here and no angular information is considered.

Fig. 4
Fig. 4

(a) Calculated emission spectra from a cavity OLED assuming delta-shaped emission profiles represented by the points. The lines represent the fitted emission spectra. (b) Comparison between the assumed and extracted emission profiles. The vertical points stand for the assumed positions of the delta-shaped emission profile. The linear method was used here and no angular information is considered.

Fig. 5
Fig. 5

(a) Difference between the extracted emission profile for analyzed spectral data with and without angular information. The method used is the linear fit algorithm. (b) Radiance obtained by integration over the emission spectrum for each angle. Calculated emission intensities using the dipole model in combination with the assumed (c) and extracted emission profile (d).

Fig. 6
Fig. 6

(a) Comparison between the extracted emission profiles where a priori one knows the shape of the source spectrum and where this information is left as another degree of freedom. (b) The extracted source spectrum by the linear fitting method in comparison to the assumed. The method used is the linear fitting algorithm and angular information is incorporated.

Fig. 7
Fig. 7

(a) Fitted emission spectrum compared to the emission spectrum calculated by the assumed emission profiles. (b) Comparison between the assumed and extracted emission profiles of two emitters. The method used is the linear algorithm and no angular information is incorporated.

Fig. 8
Fig. 8

(a) Extracted emission profiles where different signal to noise ratios (s/n) have been assumed compared to the assumed emission profile. The method used is the linear fitting method. (b) Relative error between the extracted and assumed emission profile as a function of the signal-to-noise ratio. The signal-to-noise ratio is defined as the maximum emission intensity value divided by the standard deviation of the noise.

Fig. 9
Fig. 9

(a) Emission spectra resulting from the extracted emission profile and assumed. (b) Comparison between the assumed and extracted emission profiles of a cavity OLED where the nonlinear fitting algorithm is used and no angular information is considered.

Fig. 10
Fig. 10

(a) The difference between the extracted emission profile and assumed. The method used is the nonlinear fit algorithm with incorporation of angular information. (b) The radiance obtained by integration over the emission spectrum for each angle. Calculated emission intensities using the dipole model in combination with the assumed (c) and extracted emission profile (d).

Fig. 11
Fig. 11

(a) Assumed and extracted emission profile. (b) Comparison between the a priori known source spectrum and the extracted source spectrum by the nonlinear optimization method with incorporation of angular information.

Fig. 12
Fig. 12

(a) Comparison between the assumed and extracted emission profiles for two emitters. The method used in this case is the nonlinear optimization method without incorporation of angular information. (b) Fitted emission spectrum compared to the emission spectrum used as data for the analysis and calculated by the assumed emission profiles.

Fig. 13
Fig. 13

(a) Extracted emission profiles where different signal to noise ratios (s/n) have been assumed compared to the assumed emission profile. The method used is the nonlinear fitting method. (b) Relative error between the extracted and assumed emission profile as a function of the signal to noise ratio. The signal to noise ratio is defined as the maximum emission intensity value divided by the standard deviation of the noise.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I f ( λ i ) = j = 1 N I c ( λ i , δ j ) P e ( δ j ) ,
I c ( λ i , δ j ) = I ( λ i , δ j ) S ( λ i ) ,
r 1 ( λ i ) = I f ( λ i ) I m ( λ i ) .
r 1 ( λ i ) = j = 1 N I c ( λ i , δ j ) P e ( δ j ) I m ( λ i ) .
A = ( I c ( λ 1 , δ 1 ) I c ( λ 1 , δ 2 ) I c ( λ 1 , δ N ) I c ( λ 2 , δ 1 ) I c ( λ 2 , δ 2 ) I c ( λ 2 , δ N ) I c ( λ M , δ 1 ) I c ( λ M , δ 2 ) I c ( λ M , δ N ) ) ,
r 2 s , p ( λ i , θ l ) = j = 1 N I c s , p ( λ i , δ j k , θ l ) P e ( δ j k ) I m s , p ( λ i , θ l ) .
r 3 s , p ( λ i , x , θ l ) = I c s , p ( λ i , x , θ l ) I m s , p ( λ i , θ l ) .
f ( x ) = 1 2 Q M ( s , p l = 1 Q i = 1 M r 3 s , p ( λ i , x , θ l ) 2 ) 1 2 .
s / n = m a x ( I c ( λ i , θ l ) ) σ ,

Metrics