Abstract

We report on the design, fabrication, and measurement of ultrathin film a-Si:H solar cells with nanostructured plasmonic back contacts, which demonstrate enhanced short circuit current densities compared to cells having flat or randomly textured back contacts. The primary photocurrent enhancement occurs in the spectral range from 550 nm to 800 nm. We use angle-resolved photocurrent spectroscopy to confirm that the enhanced absorption is due to coupling to guided modes supported by the cell. Full-field electromagnetic simulation of the absorption in the active a-Si:H layer agrees well with the experimental results. Furthermore, the nanopatterns were fabricated via an inexpensive, scalable, and precise nanopatterning method. These results should guide design of optimized, non-random nanostructured back reflectors for thin film solar cells.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
    [CrossRef] [PubMed]
  2. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
    [CrossRef]
  3. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  4. R. E. I. Schropp, and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology, (Kluwer Academic Publishers, Norwell, Mass., 1998).
  5. P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
    [CrossRef]
  6. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous silicon,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  7. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  8. P. Lechner, W. Frammelsberger, W. Psyk, R. Geyer, H. Maurus, D. Lundszien, H. Watner, and B. Eichhorn, “Status of performance of thin film silicon solar cells and modules,” Conference record of the 23rd European Photovoltaic Solar Energy Conference, 2023–2026 (2008).
  9. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]
  10. Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
    [CrossRef]
  11. J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
    [CrossRef]
  12. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
    [CrossRef]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  14. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (to be published).
    [PubMed]
  15. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [CrossRef]
  16. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  17. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  18. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  19. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  20. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  21. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  22. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
    [CrossRef]
  23. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef]
  24. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009).
    [CrossRef] [PubMed]
  25. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef]
  26. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
    [CrossRef]
  27. O. Isabella, A. Campa, M. C. R. Heijna, W. Soppa, R. van Ervan, R. H. Franken, H. Borg, and M. Zeman, “Diffraction gratings for light trapping in thin-film silicon solar cells,” Conference Record of the 23rd European Photovoltaic Solar Energy Conference, 2320–2324 (2008).
  28. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
    [CrossRef]
  29. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [CrossRef]
  30. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).
  31. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  32. C. Stuart and Y. Chen, “Roll in and roll out: a path to high-throughput nanoimprint lithography,” ACS Nano 3(8), 2062–2064 (2009).
    [CrossRef] [PubMed]
  33. M. Verschuuren and H. van Sprang, “3D photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Sym. Proc. 1002, N03–N05 (2007).
  34. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
    [CrossRef]
  35. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  36. H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
    [CrossRef]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

2009 (6)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

C. Stuart and Y. Chen, “Roll in and roll out: a path to high-throughput nanoimprint lithography,” ACS Nano 3(8), 2062–2064 (2009).
[CrossRef] [PubMed]

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009).
[CrossRef] [PubMed]

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

2008 (6)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

2007 (4)

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

M. Verschuuren and H. van Sprang, “3D photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Sym. Proc. 1002, N03–N05 (2007).

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2004 (2)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2003 (1)

J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

2002 (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

2001 (1)

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
[CrossRef]

1999 (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

1998 (2)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

1992 (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

1986 (1)

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous silicon,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Adachi, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Atwater, H. A.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (to be published).
[PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

Catchpole, K. R.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, Y.

C. Stuart and Y. Chen, “Roll in and roll out: a path to high-throughput nanoimprint lithography,” ACS Nano 3(8), 2062–2064 (2009).
[CrossRef] [PubMed]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Dagkaldiran, Ü.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Djurisic, A. B.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Eisele, C.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
[CrossRef]

Elazar, J. M.

Evans, P.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Fahr, S.

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Ferry, V. E.

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (to be published).
[PubMed]

Finger, F.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Fischer, A. J.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Franken, R. H.

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

Gordijn, A.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Gotoh, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Hayasahi, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Keppner, H.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Koleske, D. D.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Krc, J.

J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lederer, F.

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

Li, H.

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Majewski, M. L.

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Munday, J. N.

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Nebel, C. E.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
[CrossRef]

Nishimura, H.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Pacifici, D.

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Pryce, I. M.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Rakic, A. D.

Rath, J. K.

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Remes, Z.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Rockstuhl, C.

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

Saeta, P. N.

Sato, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

Shah, A.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Sheel, D. W.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Smole, F.

J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous silicon,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Stolk, R. L.

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

Stuart, C.

C. Stuart and Y. Chen, “Roll in and roll out: a path to high-throughput nanoimprint lithography,” ACS Nano 3(8), 2062–2064 (2009).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Stutzmann, M.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Topic, M.

J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Torres, P.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Tscharner, R.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

van der Werf, C. H. M.

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

van Sprang, H.

M. Verschuuren and H. van Sprang, “3D photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Sym. Proc. 1002, N03–N05 (2007).

Vanecek, M.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Verschuuren, M.

M. Verschuuren and H. van Sprang, “3D photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Sym. Proc. 1002, N03–N05 (2007).

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Wakayama, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous silicon,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Yates, H. M.

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

ACS Nano (1)

C. Stuart and Y. Chen, “Roll in and roll out: a path to high-throughput nanoimprint lithography,” ACS Nano 3(8), 2062–2064 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (to be published).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous silicon,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar-cells under concentrated sunlight,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

J. Appl. Phys. (4)

R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Langmuir (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18(13), 5314–5320 (2002).
[CrossRef]

Mater. Res. Soc. Sym. Proc. (1)

M. Verschuuren and H. van Sprang, “3D photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Sym. Proc. 1002, N03–N05 (2007).

Mater. Sci. Eng. B (1)

Ü. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD,” Mater. Sci. Eng. B 159–160, 6–9 (2009).
[CrossRef]

Nano Lett. (2)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (2)

J. Krč, F. Smole, and M. Topič, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Rep. Res. Lab. Asahi Glass Co. Ltd. (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).

Science (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Thin Solid Films (1)

H. B. T. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates,” Thin Solid Films 517(12), 3476–3480 (2009).
[CrossRef]

Other (3)

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppa, R. van Ervan, R. H. Franken, H. Borg, and M. Zeman, “Diffraction gratings for light trapping in thin-film silicon solar cells,” Conference Record of the 23rd European Photovoltaic Solar Energy Conference, 2320–2324 (2008).

R. E. I. Schropp, and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology, (Kluwer Academic Publishers, Norwell, Mass., 1998).

P. Lechner, W. Frammelsberger, W. Psyk, R. Geyer, H. Maurus, D. Lundszien, H. Watner, and B. Eichhorn, “Status of performance of thin film silicon solar cells and modules,” Conference record of the 23rd European Photovoltaic Solar Energy Conference, 2023–2026 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plasmonic light trapping solar cell design. (a) Schematic cross section of the patterned solar cell. Patterns are made on the rear glass substrate, and there is conformal deposition of all layers over the patterns through the top ITO contact. Incident blue and red arrows indicate that blue light is absorbed before reaching the back contact while red light interacts more with the back patterns. (b) Photograph of finished imprinted patterned solar cell substrate. Each colored square is a separate device, with different particle diameter and pitch. (c) SEM of Ag overcoated patterns showing 290 nm diameter particles with 500 nm pitch. (d) SEM image of a cross section of a fabricated cell, cut using focused ion beam milling. Note that the ultrathin a-Si:H layer constitutes only a small part of the cell.

Fig. 2
Fig. 2

Surface topography of nanopatterned and randomly textured solar cells. Tapping-mode AFM images of the top ITO contacts for two of the cells compared in this study. The underlying Ag/ZnO:Al nanostructure is transferred through each layer conformally, so that both the front and back contacts are structured. (a) Patterned cell with 500 nm pitch, (b) Cell on randomly textured Asahi U-type glass substrate.

Fig. 3
Fig. 3

Electrical measurements on plasmonic solar cells. Data are shown for a-Si:H with two different intrinsic layer thicknesses. (a) a-Si:H thickness 340 nm and (b) a-Si:H thickness 160 nm. Curves are shown for square grid patterns of 250 nm diameter plasmonic scatterers at pitches of 500 nm and 700 nm, the flat reference cell, and (in (b)) the randomly textured Asahi cell.

Fig. 4
Fig. 4

External quantum efficiency spectra of nanopatterned and randomly textured cells from measurement and simulation. EQE spectra are shown in (a) for cells of thickness 160 nm, under one sun illumination at 0V bias. The primary enhancement in photocurrent over the flat reference cell occurs from 550 - 800 nm. The 500 nm pitch cell shows higher EQE than the randomly textured Asahi cell. The inset of (a) shows EQE measurements of these two cells at higher spectral resolution. Electromagnetic simulations of the generation rate spectra are shown in (b) for the same set of devices.

Fig. 5
Fig. 5

Angle-resolved photocurrent spectroscopy. Measured EQE versus incident wavelength and incident angle for (a) the randomly textured Asahi cell and (b) the 500 nm pitch nanopatterned cell with 160 nm a-Si:H thickness. The Asahi cell shows a rather isotropic angular response, while the nanopatterned sample shows clear evidence of grating coupling to guided modes. The EQE enhancement for the nanopatterned sample, the ratio of (b) to (a), is shown in c; the calculated folded-zone dispersion diagram of the lowest-order TE and TM modes is superimposed.

Metrics