Abstract

A new yellowish-orange phosphor, Sr8Al12O24S2:Eu2+, was synthesized by the solid-state method and its photoluminescence properties were investigated by excitation and emission spectra. Its excitation band is extending from 400−500 nm, which is adaptable to the emission band of blue LED chips (450−470 nm). Upon the excitation of 450 nm light, the phosphor exhibits strong yellowish-orange emission centered at 605 nm with good thermal stability. A white light-emitting diode (W-LED) that consists of a blue LED chip (~470 nm) and a (Sr0.92Eu0.08)8Al12O24S2 phosphor is demonstrated. The CIE1931 chromaticity coordinates (x, y) are (0.34, 0.25), the correlated color temperature (CCT) is 4300 K, and the luminous efficacy of this W-LED is 14.2 lm/W at room temperature and with a forward-bias current of 400 mA.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “National project on light for the 21st century: year 2000 report of results,” (Japan Research and Development Center of Metals, Tokyo, 2000).
  2. D. Malakoff, “Materials science. Lighting initiative flickers to life,” Science 296(5574), 1782a (2002).
    [CrossRef]
  3. S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
    [CrossRef]
  4. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
    [CrossRef]
  5. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
    [CrossRef]
  6. P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
    [CrossRef]
  7. K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
    [CrossRef]
  8. C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
    [CrossRef]
  9. X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
    [CrossRef]
  10. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light- emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18(8), 8187–8192 (2010).
    [CrossRef] [PubMed]
  11. M. E. Brenchley and M. T. Weller, “Synthesis and Structure of Sulfide Aluminate Sodalites,” J. Mater. Chem. 2(10), 1003–1005 (1992).
    [CrossRef]
  12. V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
    [CrossRef]
  13. T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
    [CrossRef]
  14. L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
    [CrossRef]
  15. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  16. L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
    [CrossRef]
  17. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [CrossRef]
  18. W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
    [CrossRef]
  19. T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18(3), 1888–1897 (2010).
    [CrossRef] [PubMed]

2010 (2)

2006 (2)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

2005 (2)

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

2003 (1)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

2002 (1)

D. Malakoff, “Materials science. Lighting initiative flickers to life,” Science 296(5574), 1782a (2002).
[CrossRef]

1999 (1)

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

1998 (2)

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

1997 (2)

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[CrossRef]

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

1992 (1)

M. E. Brenchley and M. T. Weller, “Synthesis and Structure of Sulfide Aluminate Sodalites,” J. Mater. Chem. 2(10), 1003–1005 (1992).
[CrossRef]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

1967 (1)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

1961 (1)

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Bando, K.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Barthou, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

Baur, J.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Benalloul, P.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Brenchley, M. E.

M. E. Brenchley and M. T. Weller, “Synthesis and Structure of Sulfide Aluminate Sodalites,” J. Mater. Chem. 2(10), 1003–1005 (1992).
[CrossRef]

Chang, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

Chartier, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

Chen, T. M.

Choi, K. J.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Feng, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

Frigerio, J. M.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

Frisch, H. L.

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

Gordon, S. B.

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

Hammersley, J. M.

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

Hielscher, Ch.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Honma, T.

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

Im, W. B.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jeon, D. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jiang, L.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

Jung, H. K.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jung, K. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Kang, J. H.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Kim, C. H.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

Kim, J. M.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

Kim, K. N.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

Kim, Y. I.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Kunzer, M.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Kuo, T. W.

Liu, W. R.

Malakoff, D.

D. Malakoff, “Materials science. Lighting initiative flickers to life,” Science 296(5574), 1782a (2002).
[CrossRef]

Mao, D.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

Nakamura, S.

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[CrossRef]

Noguchi, Y.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Obloh, H.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Park, J. K.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

Sakano, K.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Sato, M.

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

Schlotter, P.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Schmidt, R.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Schneider, J.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Shimizu, Y.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Su, Q.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

Toda, K.

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

Vyssotsy, V. A.

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

Weller, M. T.

M. E. Brenchley and M. T. Weller, “Synthesis and Structure of Sulfide Aluminate Sodalites,” J. Mater. Chem. 2(10), 1003–1005 (1992).
[CrossRef]

Xu, J.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

Ye, Z. G.

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

Zhang, J.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

Zhang, X.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Electrochem. Solid-State Lett. (1)

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap Energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett. 9(2), G53–G55 (2006).
[CrossRef]

J. Alloy. Comp. (1)

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp. 389(1-2), 247–251 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor,” J. Am. Ceram. Soc. 89(11), 3413–3416 (2006).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

J. Electrochem. Soc. (1)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

J. Light Visual Environ. (1)

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-bright and Pure-white LED Lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

J. Mater. Chem. (1)

M. E. Brenchley and M. T. Weller, “Synthesis and Structure of Sulfide Aluminate Sodalites,” J. Mater. Chem. 2(10), 1003–1005 (1992).
[CrossRef]

J. Mater. Res. (1)

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

J. Phys. Chem. Solids (1)

T. Honma, K. Toda, Z. G. Ye, and M. Sato, “Concentration Quenching of The Eu3+-Activated Luminescence in Some Layered Perovskites with Two-Dimensional Arrangement,” J. Phys. Chem. Solids 59(8), 1187–1193 (1998).
[CrossRef]

Mater. Sci. Eng. B (2)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mater. Sci. Eng. B 103(3), 271–275 (2003).
[CrossRef]

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Opt. Express (2)

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Phys. Rev. (1)

V. A. Vyssotsy, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, “Critical Percolation Probabilities (Bond Problem),” Phys. Rev. 123(5), 1566–1567 (1961).
[CrossRef]

Proc. SPIE (1)

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[CrossRef]

Science (1)

D. Malakoff, “Materials science. Lighting initiative flickers to life,” Science 296(5574), 1782a (2002).
[CrossRef]

Other (1)

“National project on light for the 21st century: year 2000 report of results,” (Japan Research and Development Center of Metals, Tokyo, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of Sr8Al12O24S2 (Ref. 11) and (Sr0.92Eu0.08)8Al12O24S2 sample. Inset: the body-centred cubic structure of Sr8Al12O24S2.

Fig. 2
Fig. 2

Comparison of UV-Vis diffuse reflectance spectra for undoped Sr8Al12O24S2 and (Sr0.92Eu0.08)8Al12O24S2.

Fig. 3
Fig. 3

PLE and PL spectra of (Sr0.92Eu0.08)8Al12O24S2 phosphor. (λex. = 450 nm, λem. = 605 nm).

Fig. 4
Fig. 4

Emission intensity as a function of Eu2+ concentration (x) for (Sr1-xEux)8Al12O24S2 (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14) phosphors (λex. = 450 nm).

Fig. 5
Fig. 5

PL spectra of (Sr0.92Eu0.08)8Al12O24S2 phosphor excited at 450 nm with different temperatures. The inset shows the normalized PL intensity as a function of temperatures. For comparison, thermal quenching data of commercial phosphor (SrS:Eu2+) excited at 450 nm were also measured as a reference.

Fig. 6
Fig. 6

(a) EL spectra of an InGaN-based blue-LED driven with a 400 mA current. (b) EL spectra of a white emitting InGaN-based blue-LED comprising of (Sr0.92Eu0.08)8Al12O24S2 phosphor driven with a 400 mA current. Inset: blue-LED and W-LED photos.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( Sr 1 x Eu x ) 64 [ Al 96 O 192 ] ( SO 4 ) 16 8 ( Sr 1 x Eu x ) 8 Al 12 O 24 S 2 + 64 H 2 O
R c 2 ( 3 V 4 π x c N ) 1 / 3
ln I I 0 = ln A E a k T

Metrics