Abstract

The simulation results of absorption enhancement in an amorphous-Si (a-Si) solar cell by depositing metal nanoparticles (NPs) on the device top and embedding metal NPs in a layer above the Al back-reflector are demonstrated. The absorption increase results from the near-field constructive interference of electromagnetic waves in the forward direction such that an increased amount of sunlight energy is distributed in the a-Si absorption layer. Among the three used metals of Al, Ag, and Au, Al NPs show the most efficient absorption enhancement. Between the two used NP geometries, Al nanocylinder (NC) are more effective in absorption enhancement than Al nanosphere (NS). Also, a random distribution of isolated metal NCs can lead to higher absorption enhancement, when compared with the cases of periodical metal NC distributions. Meanwhile, the fabrication of both top and bottom Al NCs in a solar cell results in further absorption enhancement. Misalignments between the top and bottom Al NCs do not significantly reduce the enhancement percentage. With a structure of vertically aligned top and bottom Al NCs, solar cell absorption can be increased by 52%.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  2. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
    [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 .
    [CrossRef] [PubMed]
  4. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
    [CrossRef]
  5. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
    [CrossRef]
  6. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
    [CrossRef]
  7. T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
    [CrossRef]
  8. T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
    [CrossRef]
  9. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
    [CrossRef]
  10. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
    [CrossRef]
  11. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  12. K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
    [CrossRef]
  13. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  14. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [CrossRef]
  15. X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
    [CrossRef]
  16. K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
    [CrossRef]
  17. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  18. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef]
  20. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2682 .
    [CrossRef] [PubMed]
  21. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  22. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  23. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  24. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
    [CrossRef]
  25. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  26. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [CrossRef]
  27. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
    [CrossRef]
  28. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  29. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
    [CrossRef]
  30. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [CrossRef]
  31. A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002).
    [CrossRef]
  32. C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17(16), 14186–14198 (2009), http://www.opticsinfobase.org/DirectPDFAccess/9D628AAA-BDB9-137E-CE5738553228C182_184261.pdf?da=1&id=184261&seq=0 .
    [CrossRef] [PubMed]
  33. J. Jin, and D. J. Riley, Finite Element Analysis of Antennas and Arrays (John Wiley & Sons, 2009)
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
  35. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986).
    [CrossRef]
  36. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2010 (1)

2009 (2)

2008 (12)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

2007 (4)

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 .
[CrossRef] [PubMed]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

2006 (2)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

2004 (2)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2002 (3)

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002).
[CrossRef]

2000 (2)

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

1995 (1)

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

1993 (1)

T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
[CrossRef]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986).
[CrossRef]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Alamariu, B. A.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Ballif, C.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Bermel, P.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 .
[CrossRef] [PubMed]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986).
[CrossRef]

Broderick, K. A.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

Chen, C. Y.

Chen, X.

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Cubero, O.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Duan, X.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Ebe, T.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Fahr, S.

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Fejfar, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Glatthaar, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Haug, F.-J.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Hayashi, S.

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
[CrossRef]

Hinsch, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Hong, C.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Huang, J. J.

Inganäs, O.

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Joannopoulos, J.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Joannopoulos, J. D.

Kaneko, F.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Kato, K.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Kiang, Y. W.

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kimerling, L. C.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 .
[CrossRef] [PubMed]

Kirsch, A.

A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002).
[CrossRef]

Kocka, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Kume, T.

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
[CrossRef]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

Li, N.

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Lu, Y. C.

Luo, C.

Lüth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meier, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Monk, P.

A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Ng, M. K.

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Niggemann, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Ohkuma, H.

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Persson, N.

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

Poruba, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Rahachou, A.

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Remes, Z.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Rothberg, L.

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Shah, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Shinbo, K.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Söderström, T.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Springer, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Torres, P.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Tsai, F. J.

Tsuruta, H.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Tvingstedt, K.

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Vanecek, M.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

Wakamatsu, T.

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Wang, J. Y.

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Yamamoto, K.

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
[CrossRef]

Yang, C. C.

Yi, Y.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Zeng, L.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 .
[CrossRef] [PubMed]

Zhao, C.

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Zozoulenko, I. V.

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Appl. Phys. Lett. (14)

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[CrossRef]

J. Appl. Phys. (6)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000).
[CrossRef]

J. Lumin. (1)

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993).
[CrossRef]

T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995).
[CrossRef]

Mater. Sci. Eng. C (1)

K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002).
[CrossRef]

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Numer. Math. (1)

A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Thin Solid Films (1)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

J. Jin, and D. J. Riley, Finite Element Analysis of Antennas and Arrays (John Wiley & Sons, 2009)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Solar cell structure in a simulation window with an NP on the top; (b) Solar cell structure in one-half the simulation window with a metal NP on the top and another metal NP in the bottom ITO layer contacting the bottom Al layer.

Fig. 2
Fig. 2

Used refractive index and absorption coefficient of a-Si for simulations obtained from Refs. 34 and 35.

Fig. 3
Fig. 3

Photon absorption rates as functions of wavelength with Al, Ag, Au, and SiO2 NCs on the top of a solar cell. For comparison, the reference case, in which no NP is used, and the photon flux of AM 1.5G are also demonstrated.

Fig. 4
Fig. 4

Phase differences as functions of wavelength between the unperturbed and scattered fields when Al, Ag, Au, and SiO2 NCs are used in the solar cell structure shown in Fig. 1(a).

Fig. 5
Fig. 5

Photon absorption rates as functions of wavelength with Al, Ag, Au, and SiO2 NSs on the top of solar cells. For comparison, the reference case, in which no NP is used, and the photon flux of AM 1.5G are also demonstrated.

Fig. 6
Fig. 6

Phase differences as functions of wavelength between the unperturbed and scattered fields when Al, Ag, Au, and SiO2 NSs are used in the solar cell structure shown in Fig. 1(a).

Fig. 7
Fig. 7

Distributions of electrical intensity enhancement ratios (over that of the reference case) within the a-Si regions in the x-z plane. Here, x = 0 corresponds to the center of the NP. The two horizontal white dashed lines represent the boundaries between the p-type and intrinsic a-Si layers and between the intrinsic and n-type layers. Parts (a)-(h) correspond to the cases of Al NC at 525 nm (enhanced), Ag NC at 600 nm (enhanced), Ag NC at 405 nm (suppressed), SiO2 NC at 525 nm (enhanced), Al NS at 525 nm (enhanced), Ag NS at 525 nm (enhanced), Ag NS at 405 nm (suppressed), and SiO2 NS at 525 nm (enhanced), respectively.

Fig. 8
Fig. 8

Comparisons of photon absorption rate between the cases of periodical top metal NC distributions (curves of periodic Al, periodic Ag, and periodic Au) and single top metal NP configurations (curves of single Al, single Ag, and single Au). The curves of reference (no NP) and photon flux of AM 1.5G are also shown for comparison.

Fig. 9
Fig. 9

Distributions of electrical intensity enhancement ratios (over that of the reference case) at 500 nm in wavelength in the x-y plane at the depth of 65 nm from the top surface of the p-a-Si layer with the circles centered at the centers of an Al NC (a) and an Ag NC (b) of 100 nm in diameter on the device top. The values of D in nm indicate the diameters of the white dashed circular curves.

Fig. 10
Fig. 10

Enhancement ratios as functions of effective absorption diameter with respect to the reference case when single Al, Ag, and Au NCs are individually placed at the device top, corresponding to the data in Figs. 8 and 9.

Fig. 11
Fig. 11

Photon absorption rates as functions of wavelength in the cases of periodical top Al NC distribution (top), bottom Al NC distribution (bottom), and both top and bottom Al NC distributions (double). In the case of double NCs, the top and bottom NCs are vertically aligned. The curves of the reference condition (no NP) and AM 1.5G are also shown for comparison.

Fig. 12
Fig. 12

Distributions of electrical intensity enhancement ratios (over that of the reference case) within the a-Si regions in the x-z plane of the cases in Fig. 11 with (a)-(c) for the cases of top NC, (d)-(f) for the cases of bottom NC, and (g)-(i) for the cases of double NCs. The corresponding wavelengths are 525 nm in (a), (d), and (g), 600 nm in (b), (e), and (h), and 675 nm in (c), (f), and (i). The two horizontal white dashed lines represent the boundaries between the p-type and intrinsic a-Si layers and between the intrinsic and n-type layers.

Fig. 13
Fig. 13

Photon absorption rates as functions of wavelength in various cases of double Al NCs with the vertical alignment shifted horizontally by one-quarter (Λ/4 shift) and one-half (Λ/2 shift) the period (Λ) in the x- and y directions. The incident sunlight is assumed to be x-polarized. The curves of no shift, reference, and AM 1.5G are also shown for comparison.

Fig. 14
Fig. 14

Distributions of electrical intensity enhancement ratios (over that of the reference case) within the a-Si regions in the x-z plane of the cases in Fig. 13 with (a)-(c) for the case of Λ/4 shift-x, (d)-(f) for the case of Λ/2 shift-x, (g)-(i) for the case of Λ/4 shift-y, and (j)-(l) for the case of Λ/2 shift-y. The corresponding wavelengths are 525 nm in (a), (d), (g), and (j), 600 nm in (b), (e), (h), and (k), and 675 nm in (c), (f), (i), and (l). The two horizontal white dashed lines represent the boundaries between the p-type and intrinsic a-Si layers and between the intrinsic and n-type layers.

Tables (3)

Tables Icon

Table 1 Integrated photon absorption rates and their ratios with respect to the reference level of various cases in Figs. 3 and 5. The photon absorption rate of AM 1.5G covers the whole solar spectral range.

Tables Icon

Table 2 Integrated photon absorption rates and their ratios with respect to the reference level of various cases in Fig. 8. The photon absorption rate of AM 1.5G covers the whole solar spectral range.

Tables Icon

Table 3 Integrated photon absorption rates and their ratios with respect to the reference level of various cases in Figs. 11 and 12. The photon absorption rate of AM 1.5G covers the whole solar spectral range.

Metrics