Abstract

Using a selective emitter with high emissivity in the visible wavelength region and low emissivity in the infrared wavelength region, we reduced the infrared contribution to the blackbody radiation spectrum and shifted the peak emission to shorter wavelengths. We made precise measurements of thermal radiation loss. The conversion efficiency from input electric power to visible light radiation was quantitatively evaluated with high accuracy. Using the proposed selective emitter, the conversion efficiencies in excess of 95% could be produced. Our conclusions pave the way for the design of incandescent lamps with luminous efficiencies exceeding 400 lm/W.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Keefe, (2007). The nature of light. (see also http://www.ccri.edu/physics/keefe/light.htm ).
  2. D. L. Klipstein, (1996). The great internet light bulb book, part 1. (see also http://freespace. virgin.net/tom. baldwin/bulbguide.html ).
  3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
    [CrossRef]
  5. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
    [CrossRef]
  6. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
    [CrossRef]
  7. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [CrossRef]
  8. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [CrossRef]
  9. S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
    [CrossRef] [PubMed]
  10. F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
    [CrossRef]
  11. S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
    [CrossRef]
  12. H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [CrossRef]
  13. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [CrossRef] [PubMed]
  14. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
    [CrossRef]
  15. I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
    [CrossRef]
  16. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [CrossRef]
  17. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [CrossRef]
  18. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [CrossRef]
  19. F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
    [CrossRef]
  20. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  21. J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, “Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating,” Opt. Express 16(12), 8742–8747 (2008).
    [CrossRef] [PubMed]
  22. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003).
    [CrossRef] [PubMed]
  23. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003).
    [CrossRef] [PubMed]
  24. J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
    [CrossRef]
  25. J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
    [CrossRef]
  26. G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
    [CrossRef]
  27. A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
    [CrossRef]
  28. T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
    [CrossRef]
  29. D. G. Fink, and H. W. Beaty, Standard Handbook for Electric Engineers, 11th Edition, McGraw-Hill, New York, 1978, p. 22.
  30. Magazine Online, (see also http://www.homelighting.com/article.cfm?intarticleID=880 ).

2009 (3)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
[CrossRef] [PubMed]

2008 (3)

I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, “Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating,” Opt. Express 16(12), 8742–8747 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (1)

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

2003 (4)

H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003).
[CrossRef] [PubMed]

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

2002 (3)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

2000 (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

1997 (1)

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

1988 (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
[CrossRef]

1986 (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

1980 (1)

G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
[CrossRef]

1979 (1)

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

1977 (1)

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[CrossRef]

1976 (1)

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[CrossRef]

1932 (1)

T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[CrossRef]

Abbas, M. N.

Araci, I. E.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Au, Y. Y.

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chang, Y. C.

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Constant, K.

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Doland, C.

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

El-Kady, I.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Esashi, M.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

Fan, J. C. C.

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[CrossRef]

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Fujimura, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Fukumoto, S.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Greffet, J.-J.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Guild, J.

T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[CrossRef]

Hamann, H. F.

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Hiroshima, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Ho, K. M.

J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, “Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating,” Opt. Express 16(12), 8742–8747 (2008).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Ignatiev, A.

G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
[CrossRef]

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Ingvarsson, S.

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Kasaya, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Kashiwa, T.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

Kawabata, H.

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Kim, T. G.

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Klein, L.

Kobayashi, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Kohama, T.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

Kropachev, A.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Kusunoki, F.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Lacey, J. A.

Le Gall, J.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Lee, J. H.

Leung, W.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ = 1.5 microm by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28(18), 1683–1685 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Maruyama, S.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Norwood, R. A.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

O’Neill, P.

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

Okada, M.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Olivier, M.

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Peyghambarian, N.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Shih, M. H.

Skotheim, T.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Smith, G. B.

G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
[CrossRef]

Smith, T.

T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[CrossRef]

Spura, S. A.

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[CrossRef]

Sumida, T.

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Takahara, J.

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Tay, S.

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

Tsai, D. P.

Wang, C. M.

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Yanagida, S.

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

Zajac, G.

G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
[CrossRef]

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

Zavracky, P. M.

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[CrossRef]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Appl. Phys. Lett. (9)

S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94(7), 071113 (2009).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two dimensionally confined mode in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[CrossRef]

I. Puscasu and W. L. Schaich, “Narrow-band tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

A. Ignatiev, P. O’Neill, C. Doland, and G. Zajac, “Microstructure dependence of the optical properties of solar absorbing black chrome,” Appl. Phys. Lett. 34(1), 42–44 (1979).
[CrossRef]

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[CrossRef]

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[CrossRef]

Electron. Lett. (1)

F. Kusunoki, H. Kawabata, T. Hiroshima, J. Takahara, T. Kobayashi, T. Sumida, and S. Yanagida, “Suppression of total radiant flux by three-dimensional photonic crystal coatings,” Electron. Lett. 39(7), 622–623 (2003).
[CrossRef]

J. Appl. Phys. (1)

G. Zajac, G. B. Smith, and A. Ignatiev, “Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanism,” J. Appl. Phys. 51(10), 5544–5554 (1980).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Kusunoki, T. Kohama, T. Hiroshima, S. Fukumoto, J. Takahara, and T. Kobayashi, “Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavity,” Jpn. J. Appl. Phys. 43(No. 8A), 5253–5258 (2004).
[CrossRef]

Nat. Photonics (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Nature (3)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (4)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and supression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction,” Phys. Rev. B 37(18), 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surface. II. Doped silicon: angular variation,” Phys. Rev. B 37(18), 10803–10813 (1988).
[CrossRef]

J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherence thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Trans. Opt. Soc. (1)

T. Smith and J. Guild, “The C. I. E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[CrossRef]

Other (4)

D. G. Fink, and H. W. Beaty, Standard Handbook for Electric Engineers, 11th Edition, McGraw-Hill, New York, 1978, p. 22.

Magazine Online, (see also http://www.homelighting.com/article.cfm?intarticleID=880 ).

T. J. Keefe, (2007). The nature of light. (see also http://www.ccri.edu/physics/keefe/light.htm ).

D. L. Klipstein, (1996). The great internet light bulb book, part 1. (see also http://freespace. virgin.net/tom. baldwin/bulbguide.html ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Emitter reflectance spectrum. The reflectance spectrum is a step-function-like structure designed to shift the resulting radiation toward the visible. The lower inset shows the optical thin-film structure observed by a transmission electron microscope (TEM). The upper inset presents the quantitative model for the modification of the blackbody radiation. The black line represents the reflectance spectrum, the blue line is the emissivity spectrum described by ε(λ) = 1 - R(λ), the green line is the blackbody radiation spectrum, and the red line is the modulated thermal radiation created by the product of the blackbody radiation spectrum and the emissivity ε(λ).

Fig. 2
Fig. 2

Thermal radiation spectrum from the emitter obtained by a FTIR spectrometer at 580 K (red circles), 670 K (yellow circles), 785 K (green circles), and 870 K (blue circles). For comparison, the thermal radiation spectrum from a copper plate (emissivity ε0 = 0.13) is shown (open squares). The thermal radiation spectrum of the plate obeys Planck’s law, and the results are fit by solid curves. The arrows mark the peak positions of the thermal radiation spectrum for the emitter and the plate for each temperature. The inset shows the 580 K thermal radiation spectrum from the emitter (solid circles) and the plate (open squares). The radiation spectrum of the emitter was fit using the product of the wavelength-dependent emissivity and Planck’s law, and the results were fit with theoretical curves obtained using Eq. (5).

Fig. 3
Fig. 3

The total radiation intensity as a function of temperature (T4) for the copper plates (blue circles) and the emitters (red circles). The Stefan–Boltzmann law, I∝T4, is clearly shown for the plate. The red line is the theoretical fit determined by Eq. (6). The inset shows the change in temperature as a function of input power for the plates (blue circles) and for the emitters (red circles) to estimate the ratio of the energy dissipation between the thermal radiation and the conduction. The solid blue line is the curve obtained using Eq. (7), given the linear dependence of conduction loss on temperature, denoted by the solid black line. The solid red line is the theoretical fit to the power dissipation curve of the emitters obtained by Eq. (8). This leads to the conclusion that almost 80% of the input power can be converted into thermal radiation at shorter wavelengths using the emitter.

Fig. 4
Fig. 4

The blue line represents the theoretical temperature change as a function of input power generated from Eq. (8), given an emitter with a cutoff wavelength of λ0 = 0.7 μm. The black line is the heat dissipation term due to conduction from electric wires. The broken red line is the extracted radiative power from the emitter given the step-function reflectance spectrum described in the upper inset. The red curve in the upper inset is a theoretically derived radiation spectrum, and the green line is the spectral luminous efficiency curve. The chromaticity of the incandescent lamp investigated here centers on the red circle of the inset CIE chromaticity diagram, and its correlated color temperature is beyond 9000 K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Pin = Pcond + Prad,
ε     ​ ​ ( λ )   ​ ​   =       1       R ​     ​ ​ ( λ )     .
Φ     ​ ​ ( λ )   ​ ​   =       ε     ​ ​ ( λ ) B     ​ ​ ( λ ) ,
B ( λ ) = α λ −5 exp ( β / λ T ) 1 ,
Φ ( λ ) = ε ( λ ) α λ 5 exp ( β / λ T ) 1 .
I e m i t ( T ) = ε 0 0 ( λ λ 0 ) α λ 5 exp ( β / λ T ) 1     d λ ,
P C u ( T ) = ε σ S ( T 4 T 0 4 ) + ξ ( T T 0 ) ,
P e m i t     ​ ​ ( T ) ​ ​     =       ​ { I e m i t     ​ ​ ( T ) I e m i t     ​ ​ ( T 0 ) } S     + ξ     ​ (     T T 0 ) .

Metrics